Abstract

In recent years, the StreamVane technology has developed into a mature and streamlined process that can reproduce swirl distortion for ground-test evaluation of fan and compressor performance and durability. A StreamVane device consists of complex turning vanes that accurately output a distorted secondary velocity field at a defined distance downstream. To further advance the applications and conditions in which these devices operate, a research effort was developed and completed to investigate methods to increase critical Mach numbers. The effort was split into three separate stages: (1) Perform high fidelity computational fluid dynamics (CFD) to identify peak Mach number locations within twin and quad swirl vane pack designs; (2) conduct thorough literature reviews on relevant high throughflow techniques; and (3) design and implement selected techniques to evaluate improvements using the same high-fidelity CFD methods. It was predicted that employing blade lean within high-speed vane junctions increased critical Mach numbers by 6.6%, while blade sweep resulted in a 3.5% increase. The results and conclusions from this effort are presented throughout this paper with a primary focus on comparing Mach numbers and swirl profiles between vane packs with and without high throughflow designs.

References

1.
Hoopes
,
K. M.
, and
O'Brien
,
W. F.
,
2013
, “
The Stream-Vane Method: A New Way to Generate Swirl Distortion for Jet Engine Research
,”
AIAA
Paper No. 2013-3665. 10.2514/6.2013-3665
2.
Sheoran
,
Y.
,
Bouldin
,
B.
, and
Krishnan
,
P. M.
,
2012
, “
Compressor Performance and Operability in Swirl Distortion
,”
ASME J. Turbomach.
,
134
(
4
), p.
041008
.10.1115/1.4003657
3.
Nelson
,
M.
,
Lowe
,
K. T.
,
O'Brien
,
W. F.
, and
Hoopes
,
K. M.
,
2014
, “
Stereoscopic PIV Measurements of Swirl Distortion on a Full-Scale Turbofan Engine Inlet
,”
AIAA
Paper No. 2014-0533. 10.2514/6.2014-0533
4.
Guimaraes
,
T. B.
,
Lowe
,
K. T.
,
Nelson
,
M.
,
O'Brien
,
W. F.
, and
Kirk
,
C.
,
2015
, “
Stereoscopic PIV Measurements in a Turbofan Engine Inlet With Tailored Swirl Distortion
,”
AIAA
Paper No. 2015-2866. 10.2514/6.2015-2866
5.
Frohnapfel
,
D. J.
, and
O'Brien
,
W. F.
,
2015
, “
Fan Response to Inlet Swirl Distortions Produced by Boundary Layer Ingesting Aircraft Configurations
,”
AIAA
Paper No. 2015-3804. 10.2514/6.2015-3804
6.
Schneck
,
W. C.
,
Bucalo
,
T. G.
,
Frohnapfel
,
D. J.
,
Lowe
,
K. T.
,
O'Brien
,
W. F.
, and
Copenhaver
,
W. W.
,
2017
, “
Swirling Flow Evolution Part 2: StreamFlow 2D+t Model Validated With Stereo PIV Measurements
,”
AIAA
Paper No. 2017-1622.10.2514/6.2017-1622
7.
Smith
,
K. N.
,
O'Brien
,
W. F.
, and
Lowe
,
K. T.
,
2018
, “
Analysis of Duct Vortex Development With Low- and High-Fidelity Models to Support StreamVane™ Design
,”
AIAA
Paper No. 2018-1558.10.2514/6.2018-1558
8.
Gillespie
,
J.
,
Frohnapfel
,
D. J.
,
Lowe
,
K. T.
, and
O'Brien
,
W. F.
,
2019
, “
Definition of Arbitrary Swirl Distortions by Solutions to the Helmholtz Equation
,”
AIAA
Paper No. 2019-1387.10.2514/6.2019-1387
9.
Sanders
,
D. D.
,
Nessler
,
C.
,
Copenhaver
,
W. W.
,
List
,
M. G.
, and
Janczewski
,
T. J.
,
2016
, “
Computational and Experimental Evaluation of a Complex Inlet Swirl Pattern Generation System
,”
AIAA
Paper No. 2016-5008.10.2514/6.2016-5008
10.
Nessler
,
C. A.
,
Sanders
,
D.
,
Janczewski
,
T.
,
List
,
M.
, and
Copenhaver
,
W. W.
,
2017
, “
Axial Extent of Flowfield Variation From the StreamVaneTM Swirl Pattern Generation System
,”
AIAA
Paper No. 2017-1621.10.2514/6.2017-1621
11.
Gillaugh
,
D.
,
Copenhaver
,
W. W.
,
Janczewski
,
T.
,
Holycross
,
C.
,
Sanders
,
D.
, and
Nessler
,
C.
,
2017
, “
Aeromechanical Evaluation of an FDM Printed Thermoplastic StreamVane™
,”
AIAA
Paper No. 2017-4600. 10.2514/6.2017-4600
12.
Pham
,
K. D.
,
O'Brien
,
W. F.
, and
Case
,
S. W.
,
2018
, “
Characterizing Static and Dynamic Mechanical Properties for Additive Manufactured ULTEM 9085 Used to Construct Flow Control Devices for Turbomachinery Applications
,”
ASME
Paper No. GT2018-75430. 10.1115/GT2018-75430
13.
Hayden
,
A.
, and
Untaroiu
,
A.
,
2022
, “
Strain Response and Aerodynamic Damping of a Swirl Distortion Generator Using Computational Fluid Dynamics
,”
ASME J. Fluids Eng.
,
144
(
3
), p.
031204
.10.1115/1.4052139
14.
Bucalo
,
T. G.
,
Frohnapfel
,
D. J.
,
Lowe
,
K. T.
, and
O'Brien
,
W. F.
,
2017
, “
Streamwise Development and Turbulence of a Twin-Vortex Type of Distortion for Turbofan Inlet Applications
,”
AIAA
Paper No. 2017-4992. 10.2514/6.2017-4992
15.
Guimarães
,
T.
,
Lowe
,
K. T.
, and
O'Brien
,
W. F.
,
2018
, “
StreamVane Turbofan Inlet Swirl Distortion Generator: Mean Flow and Turbulence Structure
,”
AIAA J. Propul. Power
,
34
(
2
), pp.
340
353
.10.2514/1.B36422
16.
Hayden
,
A.
,
Hefner
,
C.
,
Untaroiu
,
A.
,
Gillespie
,
J.
, and
Lowe
,
K. T.
,
2021
, “
Numerical Simulation on the Vortex Shedding From Airfoils of a Swirl Distortion Generator
,”
ASME
Paper No. GT2021-58963. 10.1115/GT2021-58963
17.
Mack
,
E. K.
,
Gillespie
,
J.
,
Frohnapfel
,
D. J.
,
O'Brien
,
W. F.
, and
Untaroiu
,
A.
,
2018
, “
Pressure Screen—StreamVane Interaction Effects on Downstream Flow Distortion Pattern
,”
AIAA
Paper No. 2018-4401. 10.2514/6.2018-4401
18.
Frohnapfel
,
D. J.
,
Lowe
,
K. T.
, and
O'Brien
,
W. F.
,
2020
, “
Development, Analysis, and Validation of a Simultaneous Inlet Total Pressure and Swirl Distortion Generator
,”
ASME
Paper No. GT2020-16125. 10.2514/6.GT2020-16125
19.
Castillo Pardo
,
A.
, and
Taylor
,
J. V.
,
2021
, “
Nonaxisymmetric Complete Flow Conditioning Gauzes
,”
Exp. Fluids
,
62
(
10
), p.
200
.10.1007/s00348-021-03290-9
20.
Denton
,
J. D.
, and
Xu
,
L.
,
2002
, “
The Effects of Lean and Sweep on Transonic Fan Performance: A Computational Study
,”
Task Q.
,
6
(
1
), pp.
23
32
.10.1115/GT2002-30327
21.
Chima
,
R.
,
Conners
,
T.
, and
Wayman
,
T.
,
2010
, “
Coupled Analysis of an Inlet and Fan for a Quiet Supersonic Jet
,”
AIAA
Paper No. 2010-479. 10.2514/6.2010-479
22.
Kor
,
O.
,
Acarer
,
S.
, and
Özkol
,
Ü.
,
2018
, “
Aerodynamic Optimization of Through-Flow Design Model of a High by-Pass Transonic Aero-Engine Fan Using Genetic Algorithm
,”
Proc. Inst. Mech. Eng., Part A
,
232
(
3
), pp.
211
224
.10.1177/0957650917730466
23.
Kim
,
S.-Y.
, and
Mori
,
K.-H.
,
1992
, “
A Study on Juncture Flows Effects of the Inclination of Strut and the Curvature of Plate
,”
J. Soc. Nav. Archit. Jpn.
,
1992
(
172
), pp.
267
275
.10.2534/jjasnaoe1968.1992.172_267
24.
Ungureanu
,
C.
, and
Lungu
,
A.
,
2009
, “
Numerical Simulation of the Turbulent Flow Around a Strut Mounted on a Plate
,”
AIP Conf. Proc.
,
1168
, pp.
689
692
.10.1063/1.3241558
25.
Mehta
,
R. D.
,
1984
, “
Effect of Wing Nose Shape on the Flow in a Wing/Body Junction
,”
Aeronaut. J.
,
88
(
880
), pp.
456
460
.10.1017/S000192400001455X
26.
Lakshmanan
,
B.
,
Tiwari
,
S.
, and
Hussaini
,
M.
,
1988
, “
Control of Supersonic Intersection Flowfields Through Filleting and Sweep
,”
AIAA
Paper No. 1988-3534. 10.2514/6.1988-3534
27.
Smith
,
L. H.
, Jr.
, and
Yeh
,
H.
,
1963
, “
Sweep and Dihedral Effects in Axial-Flow Turbomachinery
,”
ASME J. Turbomach.
,
85
(
3
), pp.
401
414
.10.1115/1.3656623
28.
Harrison
,
S.
,
1992
, “
The Influence of Blade Lean on Turbine Losses
,”
ASME J. Turbomach.
,
114
(
1
), pp.
184
190
.10.1115/1.2927982
29.
Gümmer
,
V.
,
Wenger
,
U.
, and
Kau
,
H.-P.
,
2001
, “
Using Sweep and Dihedral to Control Three-Dimensional Flow in Transonic Stators of Axial Compressors
,”
ASME J. Turbomach.
,
123
(
1
), pp.
40
48
.10.1115/1.1330268
30.
Denton
,
J. D.
, and
Xu
,
L.
,
1998
, “
The Exploitation of Three-Dimensional Flow in Turbomachinery Design
,”
Proc. Inst. Mech. Eng., Part C
,
213
(
2
), pp.
125
137
.10.1243/0954406991522220
31.
Bagshaw
,
D. A.
,
Ingram
,
G. L.
,
Gregory-Smith
,
D. G.
, and
Stokes
,
M. R.
,
2005
, “
An Experimental Study of Reverse Compound Lean in a Linear Turbine Cascade
,”
Proc. Inst. Mech. Eng., Part A
,
219
(
6
), pp.
443
449
.10.1243/095765005X31199
32.
Zeng
,
D.
,
Li
,
M.
,
Zhang
,
Y.
, and
Tan
,
C.
,
2015
, “
Numerical Investigation of Positive Dihedral Application Conditions in Compressor Cascades
,”
Propul. Power Res.
,
4
(
2
), pp.
91
104
.10.1016/j.jppr.2015.05.005
33.
Busemann
,
A.
,
1935
, “
Aerodynamischer Auftrieb Bei Überschallgeschwindigkeit
,”
Luftfahrtforschung
,
12
(
6
), pp.
210
220
.
34.
Cohen
,
D.
, and
Jones
,
R. T.
,
2015
,
High Speed Wing Theory,
Princeton University Press
,
Princeton, NJ
.
35.
Lewis
,
R. I.
, and
Hill
,
J. M.
,
1971
, “
The Influence of Sweep and Dihedral in Turbomachinery Blade Rows
,”
J. Mech. Eng. Sci.
,
13
(
4
), pp.
266
285
.10.1243/JMES_JOUR_1971_013_043_02
36.
Pullan
,
G.
, and
Harvey
,
N. W.
,
2008
, “
The Influence of Sweep on Axial Flow Turbine Aerodynamics in the Endwall Region
,”
ASME J. Turbomach.
,
130
(
4
), p.
041011
.10.1115/1.2812337
37.
Frohnapfel
,
D. J.
,
Mack
,
E.
,
Untaroiu
,
A.
,
O'Brien
,
W. F.
, and
Lowe
,
K. T.
,
2018
, “
Turbofan Nose Cone Interactions With Inlet Swirl
,”
ASME
Paper No. GT2018-76616. 10.1115/GT2018-76616
38.
Ansys, Inc.,
2022
,
ANSYS Academic Research CFX, Release 2022R1
,
Ansys, Inc
., Canonsburg, PA.
39.
Kornilov
,
V. I.
,
2017
, “
Three-Dimensional Turbulent Near-Wall Flows in Streamwise Corners: Current State and Questions
,”
Prog. Aerosp. Sci.
,
94
, pp.
46
81
.10.1016/j.paerosci.2017.07.002
40.
Stephens
,
J. E.
,
Celestina
,
M.
, and
Hughes
,
C.
,
2019
, “
Swirl Distortion Using Stream Vanes for Boundary Layer Ingestion Research
,”
ASME
Paper No. GT2019-92073. 10.1115/GT2019-92073
41.
Barth
,
T.
, and
Jespersen
,
D.
,
1989
, “
The Design and Application of Upwind Schemes on Unstructured Meshes
,”
AIAA
Paper No. 1989-366. 10.2514/6.1989-366
42.
Rhie
,
C. M.
, and
Chow
,
W.-L.
,
1983
, “
Numerical Study of the Turbulent Flow Past an Airfoil With Trailing Edge Separation
,”
AIAA J.
,
21
(
11
), pp.
1525
1532
.10.2514/3.8284
43.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
44.
Ansys, Inc.,
2022
,
ANSYS Help System, Release 2022R1
,
Ansys, Inc
., Canonsburg, PA.
45.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
, and
Freitas
,
C. J.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
You do not currently have access to this content.