Abstract

This study focused on the expansion rate of steam; the effect on efficiency was investigated experimentally and numerically by varying the expansion rate of steam in the stage, where condensation occurs by varying the flowrate and inlet temperature using a five-stage model steam turbine. The steam expansion rate of the stator blades in each stage was evaluated from the measured wall pressure and total pressure. In addition, the turbine efficiency was evaluated from the measured torque and mass flowrate, and the effect of flowrate and condensing stage can be taken into account for losses caused by condensation. In addition, numerical calculations to account for the effects of nonequilibrium condensation were performed using ANSYS CFX. The numerical calculations were able to show the details of the nucleation situation and the resulting changes in flow patterns. Numerical evaluation of the subcooling loss showed that there was no difference in subcooling loss between different mass flow rates. The steam expansion rate was evaluated from the measurement results, and it was found that there was no difference in the steam expansion rate due to differences in mass flowrate. This corresponds to the numerical result that the subcooling loss does not vary with flowrate.

References

1.
Gyarmathy
,
G.
,
1962
, “
Grundlagen Einer Theorie Der Naßdampfturbine
,” Ph.D. thesis,
ETH Zürich, Juris-Verlag Zürich
,
Switzerland
(in German).
2.
Starzmann
,
J.
,
Hughes
,
F. R.
,
Schuster
,
S.
,
White
,
A. J.
,
Halama
,
J.
,
Hric
,
V.
,
Kolovratník
,
M.
, et al.,
2018
, “
Results of the International Wet Steam Modeling Project
,”
Proc. Inst. Mech. Eng., Part A
,
232
(
5
), pp.
550
570
.10.1177/0957650918758779
3.
Yamamoto
,
S.
,
Sasao
,
Y.
,
Kato
,
H.
,
Satsuki
,
H.
,
Ooyama
,
H.
, and
Ishizaka
,
K.
,
2010
, “
Numerical and Experimental Investigations of Unsteady 3-D Wet-Steam Flows Through Two-Stage Stator-Rotor Cascade Channels
,”
ASME
Paper No. GT2010-22796.10.1115/GT2010-22796
4.
Miyake
,
S.
,
Sasao
,
Y.
,
Yamamoto
,
S.
,
Tabata
,
S.
,
Miyawaki
,
T.
, and
Ooyama
,
H.
,
2012
, “
Simulation of Unsteady 3-D Wet-Steam Flows Through Three-Stage Stator-Rotor Blade Rows With Equilibrium and Nonequilibrium Condensations
,”
ASME
Paper No. GT2012-68828. 10.1115/GT2012-68828
5.
Miyake
,
S.
,
Yamamoto
,
S.
,
Sasao
,
Y.
,
Momma
,
K.
,
Miyawaki
,
T.
, and
Ooyama
,
H.
,
2013
, “
Unsteady Flow Effect on Nonequilibrium Condensation in 3-D Low Pressure Steam Turbine Stages
,”
ASME
Paper No. GT2013-94832. 10.1115/GT2013-94832
6.
Miyake
,
S.
,
Koda
,
I.
,
Yamamoto
,
S.
,
Sasao
,
Y.
,
Momma
,
K.
,
Miyawaki
,
T.
, and
Ooyama
,
H.
,
2014
, “
Unsteady Wake and Vortex Interactions in 3-D Steam Turbine Low Pressure Final Three Stages
,”
ASME
Paper No. GT2014-25491. 10.1115/GT2014-25491
7.
Miyake
,
S.
,
Miyazawa
,
H.
,
Yamamoto
,
S.
,
Sasao
,
Y.
,
Momma
,
K.
,
Ooyama
,
H.
, and
Miyawaki
,
T.
,
2015
, “
Unsteady Wet-Steam Flows Through Low Pressure Turbine Final Three Stages Considering Blade Number
,”
ASME
Paper No. GT2015-42366. 10.1115/GT2015-42366
8.
Starzmann
,
J.
,
Schatz
,
M.
,
Casey
,
M. V.
,
Mayer
,
J. F.
, and
Sieverding
,
F.
,
2011
, “
Modelling and Validation of Wet Steam Flow in a Low Pressure Steam Turbine
,”
ASME
Paper No. GT2011-45672. 10.1115/GT2011-45672
9.
Grübel
,
M.
,
Starzmann
,
J.
,
Schatz
,
M.
,
Eberle
,
T.
,
Vogt
,
D. M.
, and
Sieverding
,
F.
,
2015
, “
Two-Phase Flow Modeling and Measurements in Low-Pressure Turbines—Part I: Numerical Validation of Wet Steam Models and Turbine Modeling
,”
ASME J. Eng. Gas Turbines Power
,
137
(
4
), p.
042602
.10.1115/1.4028468
10.
Grübel
,
M.
,
Starzmann
,
J.
,
Schatz
,
M.
, and
Vogt
,
D. M.
,
2018
, “
Modelling of Condensing Steam Flows in Laval Nozzles With ANSYS CFX
,”
Proc. Inst. Mech. Eng., Part A
,
232
(
5
), pp.
571
575
.10.1177/0957650917730664
11.
Grübel
,
M.
,
Schatz
,
M.
, and
Vogt
,
D. M.
,
2018
, “
Second Law Analysis of Condensing Steam Flows
,”
ASME J. Eng. Gas Turbines Power
, 140(12), p.
121003
.10.1115/1.4040711
12.
Moraga
,
F.
,
Wang
,
L.
, and
Ren
,
W. M.
,
2013
, “
Numerical Sensitivity Study and Calibration of Non-Equilibrium Wet Steam Model
,”
ASME
Paper No. GT2013-94628. 10.1115/GT2013-94628
13.
Moraga
,
F.
,
Vysohlid
,
M.
,
Smelova
,
N.
,
Mistry
,
H.
,
Atheya
,
S.
, and
Kanakala
,
V.
,
2012
, “
A Flux-Conservation Mixing Plane Algorithm for Multiphase Non-Equilibrium Steam Models
,”
ASME
Paper No. GT2012-68660. 10.1115/GT2012-68660
14.
Moraga
,
F.
,
2012
, “
CFD Predictions of Efficiency for Non-Equilibrium Steam 2D Cascades
,”
ASME
Paper No. GT2012-68368. 10.1115/GT2012-68368
15.
Sreedharan
,
S.
,
Mistry
,
H.
,
Ostrovskiy
,
V.
, and
Guo
,
T.
,
2015
, “
Performance Evaluation of Last Stage Bucket Tip Section Using Non-Equilibrium Wet Steam CFD Tool
,”
ASME
Paper No. GT2015-44084. 10.1115/GT2015-44084
16.
Bellucci
,
J.
,
Peruzzi
,
L.
,
Arnone
,
A.
,
Arcangeli
,
L.
, and
Maceli
,
N.
,
2019
, “
Numerical and Experimental Aerodynamic Investigation of a Low Pressure Steam Turbine Module
,”
ASME
Paper No. GT2019-91279. 10.1115/GT2019-91279
17.
Maceli
,
N.
,
Arcangeli
,
L.
, and
Arnone
,
A.
,
2021
, “
Two Phase Flow CFD Modeling of a Steam Turbine Low Pressure Section: Comparison With Data and Correlations
,”
ASME
Paper No. GT2021-59645.10.1115/GT2021-59645
18.
Post
,
P.
,
Winhart
,
B.
, and
di Mare
,
F.
,
2021
, “
Large Eddy Simulation of a Condensing Wet Steam Turbine Cascade
,”
ASME J. Eng. Gas Turbines Power
,
143
(
2
), p.
021016
.10.1115/1.4049348
19.
ANSYS CFX
,
2021
, ANSYS CFX-Solver Theory Guide (R2), ANSYS, Inc., Canonsburg, PA.
20.
Young
,
J. B.
,
1982
, “
The Spontaneous Condensation of Steam in Supersonic Nozzles
,”
Physico Chem. Hydrodyn.
,
3
(
1
), pp.
57
82
.https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=200902091692269176
21.
Tabata
,
S.
,
Segawa
,
K.
,
Takahashi
,
T.
, and
Aoyagi
,
J.
,
2022
, “
Experimental and Numerical Investigations of the Non-Equilibrium Condensation on the Performance and the Flow Pattern in Steam Turbine
,”
ASME
Paper No. GT2022-80191.10.1115/GT2022-80191
You do not currently have access to this content.