Abstract

An experimental investigation of flame structure, stability, and emissions performance was conducted in a two-stage lab-scale generic combustor design operated with CH4,H2, and NH3/H2 fuel blends. The main flame zone features a premixed bluff body stabilized flame, with a secondary flame zone initiated downstream by injecting premixed air and fuel using two opposing radial jets. The total power and air flowrate are kept constant between the different fueling cases, while the air split between stages and equivalence ratios are varied to explore conditions relevant to gas turbine operation. Given the relative novelty of the configuration, special emphasis is given to analyzing the structure of the opposing jet flames in the secondary stage. In contrast to previous literature on reacting jets in cross flow, these interact significantly due to their proximity, leading to a merged flame zone at the impingement location in the center of the combustion chamber, and some flame propagation upstream of the jet location. As the jet-to-crossflow momentum ratio increases, the merged flame zone changes shape, reaching close to the walls for the methane cases but remaining very compact when operating with almost pure hydrogen. For the hydrogen flames, diverting more air to the second stage allows higher total thermal power conditions to be reached, while avoiding flashback, and eliminates thermoacoustic instabilities. For ammonia-hydrogen flames, air is diverted to the second stage, while a constant fuel flow is sent to the primary stage, resulting in some locally rich conditions in the primary flame. A local minima in terms of NOX occurs when the primary flame is operated at an equivalence ratio of 1.15. Analysis of the flame structure suggests that this state corresponds to almost complete combustion or pyrolysis of NH3 in the main flame, with the remaining hydrogen burned in an inverse diffusion flame in the secondary zone.

References

1.
Dreizler
,
A.
,
Pitsch
,
H.
,
Scherer
,
V.
,
Schulz
,
C.
, and
Janicka
,
J.
,
2021
, “
The Role of Combustion Science and Technology in Low and Zero Impact Energy Transformation Processes
,”
Appl. Energy Combust. Sci.
,
7
, p.
100040
.10.1016/j.jaecs.2021.100040
2.
Kobayashi
,
H.
,
Hayakawa
,
A.
,
Somarathne
,
K. K. A.
, and
Okafor
,
E. C.
,
2019
, “
Science and Technology of Ammonia Combustion
,”
Proc. Combust. Inst.
,
37
(
1
), pp.
109
133
.10.1016/j.proci.2018.09.029
3.
Venkateswaran
,
P.
,
Marshall
,
A. D.
,
Seitzman
,
J. M.
, and
Lieuwen
,
T. C.
,
2014
, “
Turbulent Consumption Speeds of High Hydrogen Content Fuels From 1-20 Atm
,”
ASME J. Eng. Gas Turbines Power
,
136
(
1
), p.
011504
.10.1115/1.4025210
4.
Zel'dovich
,
Y.
,
Barenblatt
,
G.
,
Librovich
,
V.
, and
Makhviladze
,
G.
,
1985
,
The Mathematical Theory of Combustion and Explosions
,
Plenum
,
New York
.
5.
Fritz
,
J.
,
Krö Ner
,
M.
, and
Sattelmayer
,
T.
,
2004
, “
Flashback in a Swirl Burner With Cylindrical Premixing Zone
,”
ASME J. Eng. Gas Turbines Power
,
126
(
2
), pp.
276
283
.10.1115/1.1473155
6.
Noble
,
D.
,
Wu
,
D.
,
Emerson
,
B.
,
Sheppard
,
S.
,
Lieuwen
,
T.
, and
Angello
,
L.
,
2021
, “
Assessment of Current Capabilities and Near-Term Availability of Hydrogen-Fired Gas Turbines Considering a Low-Carbon Future
,”
ASME J. Eng. Gas Turbines Power
,
143
(
4
), p.
041002
.10.1115/1.4049346
7.
Okafor
,
E. C.
,
Somarathne
,
K. K. A.
,
Hayakawa
,
A.
,
Kudo
,
T.
,
Kurata
,
O.
,
Iki
,
N.
, and
Kobayashi
,
H.
,
2019
, “
Towards the Development of an Efficient low-NOx Ammonia Combustor for a Micro Gas Turbine
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
4597
4606
.10.1016/j.proci.2018.07.083
8.
Ditaranto
,
M.
,
Saanum
,
I.
, and
Larfeldt
,
J.
,
2021
, “
Experimental Study on High Pressure Combustion of Decomposed Ammonia: How Can Ammonia Be Best Used in a Gas Turbine?
,”
ASME
Paper No. GT2021-60057.10.1115/GT2021-60057
9.
Indlekofer
,
T.
,
Wiseman
,
S.
,
Nogenmyr
,
K.-J.
,
Larfeldt
,
J.
, and
Gruber
,
A.
,
2023
, “
Numerical Investigation of Rich-Lean Staging in a SGT-750 Scaled DLE Burner With Partially-Decomposed Ammonia
,”
ASME J. Eng. Gas Turbines Power
,
145
(
4
), p.
041018
.10.1115/1.4055725
10.
Wagner
,
J. A.
,
Grib
,
S. W.
,
Renfro
,
M. W.
, and
Cetegen
,
B. M.
,
2015
, “
Flowfield Measurements and Flame Stabilization of a Premixed Reacting Jet in Vitiated Crossflow
,”
Combust. Flame
,
162
(
10
), pp.
3711
3727
.10.1016/j.combustflame.2015.07.010
11.
Stiehl
,
B.
,
Genova
,
T.
,
Otero
,
M.
,
Martin
,
S.
, and
Ahmed
,
K.
,
2021
, “
Fuel Stratification Influence on NOx Emission in a Premixed Axial Reacting Jet-in-Crossflow at High Pressure
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p.
122303
.10.1115/1.4050052
12.
Panda
,
P. P.
,
Busari
,
O.
,
Roa
,
M.
, and
Lucht
,
R. P.
,
2019
, “
Flame Stabilization Mechanism in Reacting Jets in Swirling Vitiated Crossflow
,”
Combust. Flame
,
207
, pp.
302
313
.10.1016/j.combustflame.2019.06.005
13.
Rolon
,
J.
,
Veynante
,
D.
,
Martin
,
J.
, and
Durst
,
F.
,
1991
, “
Counter Jet Stagnation Flows
,”
Exp. Fluids
,
11
(
5
), pp.
313
324
.10.1007/BF00194863
14.
Holdeman
,
J. D.
, and
Walker
,
R.
,
1977
, “
Mixing of a Row of Jets With a Confined Crossflow
,”
AIAA J.
,
15
(
2
), pp.
243
249
.10.2514/3.60622
15.
Holdeman
,
J. D.
,
1993
, “
Mixing of Multiple Jets With a Confined Subsonic Crossflow
,”
Prog. Energy Combust. Sci.
,
19
(
1
), pp.
31
70
.10.1016/0360-1285(93)90021-6
16.
Nagao
,
T.
,
Matsuno
,
S.
, and
Hayashi
,
A. K.
,
2013
, “
Fluid Mixing of Opposed Jet Flows in the Rectangular Duct
,”
AIAA
Paper No. 2013–872.10.2514/6.2013-872
17.
Nagao
,
T.
,
Matsuno
,
S.
, and
Hayashi
,
A. K.
,
2014
, “
Effect of Cross-Flow Momentum on Opposing Jet Mixing
,”
Int. J. Gas Turbine, Propul. Power Syst.
,
6
(
3
), pp.
1
8
.10.38036/jgpp.6.3_1
18.
Æsøy
,
E.
,
Aguilar
,
J. G.
,
Wiseman
,
S.
,
Bothien
,
M. R.
,
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2020
, “
Scaling and Prediction of Transfer Functions in Lean Premixed H2/CH4-Flames
,”
Combust. Flame
,
215
, pp.
269
282
.10.1016/j.combustflame.2020.01.045
19.
Æsøy
,
E.
,
Nygård
,
H. T.
,
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2022
, “
Tailoring the Gain and Phase of the Flame Transfer Function Through Targeted Convective-Acoustic Interference
,”
Combust. Flame
,
236
, p.
111813
.10.1016/j.combustflame.2021.111813
20.
Nygård
,
H. T.
, and
Worth
,
N. A.
,
2021
, “
Flame Transfer Functions and Dynamics of a Closely Confined Premixed Bluff Body Stabilized Flame With Swirl
,”
ASME J. Eng. Gas Turbines Power
,
143
(
4
), p.
041011
.10.1115/1.4049513
21.
Seybert
,
A. F.
, and
Ross
,
D. F.
,
1977
, “
Experimental Determination of Acoustic Properties Using a Two-Microphone Random-Excitation Technique
,”
J. Acoust. Soc. Am.
,
61
(
5
), pp.
1362
1370
.10.1121/1.381403
22.
Poinsot
,
T.
,
Le Chatelier
,
C.
,
Candel
,
S. M.
, and
Esposito
,
E.
,
1986
, “
Experimental Determination of the Reflection Coefficient of a Premixed Flame in a Duct
,”
J. Sound Vib.
, 107(2), pp.
265
278
.10.1016/0022-460X(86)90237-3
23.
Khateeb
,
A. A.
,
Guiberti
,
T. F.
,
Zhu
,
X.
,
Younes
,
M.
,
Jamal
,
A.
, and
Roberts
,
W. L.
,
2020
, “
Stability Limits and No Emissions of Technically-Premixed Ammonia-Hydrogen-Nitrogen-Air Swirl Flames
,”
Int. J. Hydrogen Energy
,
45
(
41
), pp.
22008
22018
.10.1016/j.ijhydene.2020.05.236
24.
Khateeb
,
A. A.
,
Guiberti
,
T. F.
,
Zhu
,
X.
,
Younes
,
M.
,
Jamal
,
A.
, and
Roberts
,
W. L.
,
2020
, “
Stability Limits and Exhaust NO Performances of Ammonia-Methane-Air Swirl Flames
,”
Exp. Therm. Fluid Sci.
,
114
, p.
110058
.10.1016/j.expthermflusci.2020.110058
25.
Chiong
,
M.-C.
,
Chong
,
C. T.
,
Ng
,
J.-H.
,
Mashruk
,
S.
,
Chong
,
W. W. F.
,
Samiran
,
N. A.
,
Mong
,
G. R.
, and
Valera-Medina
,
A.
,
2021
, “
Advancements of Combustion Technologies in the Ammonia-Fuelled Engines
,”
Energy Convers. Manage.
,
244
, p.
114460
.10.1016/j.enconman.2021.114460
26.
Zhu
,
X.
,
Khateeb
,
A. A.
,
Guiberti
,
T. F.
, and
Roberts
,
W. L.
,
2021
, “
NO and OH* Emission Characteristics of Very-Lean to Stoichiometric Ammonia–Hydrogen– Air Swirl Flames
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
5155
5162
.10.1016/j.proci.2020.06.275
27.
Li
,
S.
,
Zhang
,
S.
,
Zhou
,
H.
, and
Ren
,
Z.
,
2019
, “
Analysis of Air-Staged Combustion of NH3/CH4 Mixture With Low NOx Emission at Gas Turbine Conditions in Model Combustors
,”
Fuel
,
237
, pp.
50
59
.10.1016/j.fuel.2018.09.131
28.
Aguilar
,
J. G.
,
Æsøy
,
E.
, and
Dawson
,
J. R.
,
2022
, “
The Influence of Hydrogen on the Stability of a Perfectly Premixed Combustor
,”
Combust. Flame
,
245
, p.
112323
.10.1016/j.combustflame.2022.112323
29.
Xie
,
Y.
, and
Li
,
Q.
,
2020
, “
A Review on Mixing Laws of Laminar Flame Speed and Their Applications on H2/CH4/CO/Air Mixtures
,”
Int. J. Hydrogen Energy
,
45
(
39
), pp.
20482
20490
.10.1016/j.ijhydene.2019.10.136
30.
Solana-Pérez
,
R.
,
Miniero
,
L.
,
Shcherbanev
,
S.
,
Bothien
,
M.
, and
Noiray
,
N.
,
2020
, “
Morphology and Dynamics of a Premixed Hydrogen-Methane-Air Jet Flame in Hot Vitiated Turbulent Crossflow
,”
ASME
Paper No. GT2020-16282.10.1115/GT2020-16282
31.
Wiseman
,
S.
,
Rieth
,
M.
,
Gruber
,
A.
,
Dawson
,
J. R.
, and
Chen
,
J. H.
,
2021
, “
A Comparison of the Blow-Out Behavior of Turbulent Premixed Ammonia/Hydrogen/Nitrogen-Air and Methane–Air Flames
,”
Proc. Combust. Inst.
,
38
(
2
), pp.
2869
2876
.10.1016/j.proci.2020.07.011
32.
Douglas
,
C. M.
,
Shaw
,
S. L.
,
Martz
,
T. D.
,
Steele
,
R. C.
,
Noble
,
D. R.
,
Emerson
,
B. L.
, and
Lieuwen
,
T. C.
,
2022
, “
Pollutant Emissions Reporting and Performance Considerations for Hydrogen–Hydrocarbon Fuels in Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
144
(
9
), p.
091003
.10.1115/1.4054949
33.
Nozari
,
H.
,
Karaca
,
G.
,
Tuncer
,
O.
, and
Karabeyoglu
,
A. M.
,
2017
, “
Combustion of Ammonia-Rich NH3-H2-Air Mixtures: Improvement of Flame Stability
,”
AIAA
Paper No. 2017-4682.10.2514/6.2017-4682
You do not currently have access to this content.