Abstract

The adoption of zero-carbon fuel like ammonia will play a key role in the achievement of carbon neutrality targets. This work reports a comparative study on the effect of premixed equivalence ratio (Φpremix aried from 0.8 to 1.25) on combustion and emission characteristics of ammonia-fueled engine operating initially under (a) compression ignition (CI) mode (ignited by dodecane pilot injection), and then converted to (b) spark ignition (SI) mode (by replacing fuel injector with spark plug). The experiments were performed in a single-cylinder engine (compression ratio = 16.4:1). The ammonia energy fraction was maintained at 95% during the CI mode and 100% ammonia in the SI mode. The power output and indicated thermal efficiency are lower in SI mode than in CI mode, certainly due to the occurrence of multiple auto-ignition sites. Indeed, the unburned ammonia emissions were observed to be higher in SI mode as compared to CI mode, especially in rich conditions. As expected, the carbon-based emissions reduced significantly in SI operating mode are very low, only due to lubricant oil leakages. N2O emissions were higher at near stoichiometric-rich conditions (Φpremix = 1.05–1.25) emissions but remain negligible in SI mode, except at the highest equivalence ratio (1.25). As N2O has very high global warming potential (265 times CO2 after 100 years) CO2—equivalent impact was evaluated by considering both N2O and CO2 emissions.

References

1.
El-Adawy
,
M.
,
Nemitallah
,
M. A.
, and
Abdelhafez
,
A.
,
2024
, “
Towards Sustainable Hydrogen and Ammonia Internal Combustion Engines: Challenges and Opportunities
,”
Fuel
,
364
, p.
131090
.10.1016/j.fuel.2024.131090
2.
Das
,
L. M.
,
2002
, “
Near-Term Introduction of Hydrogen Engines for Automotive and Agricultural Application
,”
Int. J. Hydrogen Energy
,
27
(
5
), pp.
479
487
.10.1016/S0360-3199(01)00163-X
3.
Moriarty
,
P.
, and
Honnery
,
D.
,
2022
, “
When Will the Hydrogen Economy Arrive?
,”
AIMS Energy
,
10
(
6
), pp.
1100
1121
.10.3934/energy.2022052
4.
Chapman
,
A.
,
Itaoka
,
K.
,
Hirose
,
K.
,
Davidson
,
F. T.
,
Nagasawa
,
K.
,
Lloyd
,
A. C.
,
Webber
,
M. E.
, et al.,
2019
, “
A Review of Four Case Studies Assessing the Potential for Hydrogen Penetration of the Future Energy System
,”
Int. J. Hydrogen Energy
,
44
(
13
), pp.
6371
6382
.10.1016/j.ijhydene.2019.01.168
5.
Kurien
,
C.
, and
Mittal
,
M.
,
2022
, “
Review on the Production and Utilization of Green Ammonia as an Alternate Fuel in Dual-Fuel Compression Ignition Engines
,”
Energy Convers. Manage.
,
251
, p.
114990
.10.1016/j.enconman.2021.114990
6.
Mounaïm-Rousselle
,
C.
, and
Brequigny
,
P.
,
2020
, “
Ammonia as Fuel for Low-Carbon Spark-Ignition Engines of Tomorrow’s Passenger Cars
,”
Front. Mech. Eng.
,
6
, p.
70
.10.3389/fmech.2020.00070
7.
Pearsall
,
T. J.
, and
Garabedian
,
C. G.
,
1968
, “
Combustion of Anhydrous Ammonia in Diesel Engines
,”
SAE
Paper No. 670947.10.4271/670947
8.
Cornelius
,
W.
,
Huellmantel
,
L. W.
, and
Mitchell
,
H. R.
,
1966
, “
Ammonia as an Engine Fuel
,”
SAE
Paper No. 650052.10.4271/650052
9.
Sawyer
,
R. F.
,
Starkman
,
E. S.
,
Muzio
,
L.
, and
Schmidt
,
W. L.
,
1968
, “
Oxides of Nitrogen in the Combustion Products of an Ammonia Fueled Reciprocating Engine
,”
SAE
Paper No. 680401.10.4271/680401
10.
Frigo
,
S.
,
Gentili
,
R.
, and
Doveri
,
N.
,
2012
, “
Ammonia Plus Hydrogen as Fuel in a SI Engine: Experimental Results
,”
SAE
Paper No. 2012-32-0019.10.4271/2012-32-0019
11.
Lhuillier
,
C.
,
Brequigny
,
P.
,
Contino
,
F.
, and
Mounaïm-Rousselle
,
C.
,
2020
, “
Experimental Study on Ammonia/Hydrogen/Air Combustion in Spark Ignition Engine Conditions
,”
Fuel
,
269
, p.
117448
.10.1016/j.fuel.2020.117448
12.
Grannell
,
S. M.
,
Assanis
,
D. N.
,
Bohac
,
S. V.
, and
Gillespie
,
D. E.
,
2008
, “
The Fuel Mix Limits and Efficiency of a Stoichiometric, Ammonia, and Gasoline Dual Fueled Spark Ignition Engine
,”
ASME J. Eng. Gas Turbines Power
,
130
(
4
), p.
042802
.10.1115/1.2898837
13.
Kurien
,
C.
,
Varma
,
P. S.
, and
Mittal
,
M.
,
2023
, “
Effect of Ammonia Energy Fractions on Combustion Stability and Engine Characteristics of Gaseous (Ammonia/Methane) Fueled Spark Ignition Engine
,”
Int. J. Hydrogen Energy
,
48
(
4
), pp.
1391
1400
.10.1016/j.ijhydene.2022.10.032
14.
Lin
,
Z.
,
Liu
,
S.
,
Qi
,
Y.
,
Chen
,
Q.
, and
Wang
,
Z.
,
2024
, “
Experimental Study on the Performance of a High Compression Ratio SI Engine Using Alcohol/Ammonia Fuel
,”
Energy
,
289
, p.
129998
.10.1016/j.energy.2023.129998
15.
Mounaïm-Rousselle
,
C.
,
Bréquigny
,
P.
,
Dumand
,
C.
, and
Houillé
,
S.
,
2021
, “
Operating Limits for Ammonia Fuel Spark-Ignition Engine
,”
Energies
,
14
(
14
), p.
4141
.10.3390/en14144141
16.
Uddeen
,
K.
,
Tang
,
Q.
,
Shi
,
H.
,
Magnotti
,
G.
, and
Turner
,
J.
,
2023
, “
A Novel Multiple Spark Ignition Strategy to Achieve Pure Ammonia Combustion in an Optical Spark-Ignition Engine
,”
Fuel
,
349
, p.
128741
.10.1016/j.fuel.2023.128741
17.
Huang
,
Q.
, and
Liu
,
J.
,
2024
, “
Preliminary Assessment of the Potential for Rapid Combustion of Pure Ammonia in Engine Cylinders Using the Multiple Spark Ignition Strategy
,”
Int. J. Hydrogen Energy
,
55
, pp.
375
385
.10.1016/j.ijhydene.2023.11.136
18.
Kishore
,
K.
,
Kurien
,
C.
, and
Mittal
,
M.
,
2024
, “
Experimental and Numerical Analysis of Engine Characteristics of an Ammonia-Substituted Dual-Fuel CRDI Diesel Engine
,”
Fuel
,
366
, p.
131354
.10.1016/j.fuel.2024.131354
19.
Dupuy
,
A.
,
Brequigny
,
P.
,
Schmid
,
A.
,
Frapolli
,
N.
, and
Mounaïm-Rousselle
,
C.
,
2023
, “
Experimental Study of RCCI Engine-Ammonia Combustion With Diesel Pilot Injection
,”
J. Ammonia Energy
,
1
(
1
), pp.
11
20
.10.18573/jae.6
20.
Mounaïm-Rousselle
,
C.
,
2023
, “
Specific Challenges for Ammonia Engines
,” 20th International Conference on Fluid Dynamics,
Tohoku University
,
Sendai, Japan
, Nov., Paper No.
hal-04402255
.https://hal.science/hal-04402255/document#:~:text=Unfortunately%20due%20to%20the%20lack,accurate%20predictions%20of%20pollutant%20species
21.
Dimitriou
,
P.
, and
Javaid
,
R.
,
2020
, “
A Review of Ammonia as a Compression Ignition Engine Fuel
,”
Int. J. Hydrogen Energy
,
45
(
11
), pp.
7098
7118
.10.1016/j.ijhydene.2019.12.209
22.
Kurien
,
C.
, and
Mittal
,
M.
,
2023
, “
Utilization of Green Ammonia as a Hydrogen Energy Carrier for Decarbonization in Spark Ignition Engines
,”
Int. J. Hydrogen Energy
,
48
(
74
), pp.
28803
28823
.10.1016/j.ijhydene.2023.04.073
23.
Lhuillier
,
C.
,
Brequigny
,
P.
,
Contino
,
F.
, and
Rousselle
,
C.
,
2019
, “
Performance and Emissions of an Ammonia-Fueled SI Engine With Hydrogen Enrichment
,”
SAE
Paper No. 2019-24-0137.10.4271/2019-24-0137
24.
Lhuillier
,
C.
,
Brequigny
,
P.
,
Contino
,
F.
, and
Rousselle
,
C.
,
2019
, “
Combustion Characteristics of Ammonia in a Modern Spark-Ignition Engine
,”
SAE
Paper No. 2019-24-0237.10.4271/2019-24-0237
25.
Yu
,
L.
,
Zhou
,
W.
,
Feng
,
Y.
,
Wang
,
W.
,
Zhu
,
J.
,
Qian
,
Y.
, and
Lu
,
X.
,
2020
, “
The Effect of Ammonia Addition on the Low-Temperature Autoignition of N-Heptane: An Experimental and Modeling Study
,”
Combust. Flame
,
217
, pp.
4
11
.10.1016/j.combustflame.2020.03.019
26.
Chen
,
L.
,
Zhao
,
W.
,
Zhang
,
R.
, and
Wei
,
H.
,
2024
, “
Comparative Study on Combustion and Flame Characteristics of NH3 Dual-Fuel Engine Under CI versus SI Combustion Modes
,”
Fuel
,
359
, p.
130525
.10.1016/j.fuel.2023.130525
27.
Zhang
,
R.
,
Chen
,
L.
,
Wei
,
H.
,
Li
,
J.
,
Ding
,
Y.
,
Chen
,
R.
, and
Pan
,
J.
,
2023
, “
Experimental Investigation on Reactivity-Controlled Compression Ignition (RCCI) Combustion Characteristic of n-Heptane/Ammonia Based on an Optical Engine
,”
Int. J. Engine Res.
,
24
(
6
), pp.
2478
2488
.10.1177/14680874221124452
28.
Caton
,
J. A.
,
2014
, “
Combustion Phasing for Maximum Efficiency for Conventional and High Efficiency Engines
,”
Energy Convers. Manage.
,
77
, pp.
564
576
.10.1016/j.enconman.2013.09.060
29.
Mounaïm-Rousselle
,
C.
,
Brequigny
,
P.
,
Houillé
,
S.
, and
Dumand
,
C.
,
2020
, “
Potential of Ammonia as Future Zero-Carbon Fuel for Future Mobility: Working Operating Limits for Spark-Ignition Engines
,”
SIA Powertrain & Energy 2020
, France, Nov. 15–28.https://hal.archives-ouvertes.fr/hal-03188481
30.
Mounaïm- Rousselle
,
C.
,
Brequigny
,
P.
, and
Dupuy
,
A.
,
2023
, “
Impact of Splitting n-Dodecane Pilot Injection on Ammonia RCCI Engine
,”
SAE
Paper No. 2023-24-0076.10.4271/2023-24-0076
31.
Hiraoka,
K.
,
Matsunaga
,
D.
,
Kamino
,
T.
,
Honda
,
Y.
,
Toshinaga
,
K.
,
Murakami
,
Y.
, and
Nakamura
,
H.
,
2023
, “
Experimental and Numerical Analysis on Combustion Characteristics of Ammonia and Diesel Dual Fuel Engine
,”
SAE
Paper No. 2023-32-0102.10.4271/2023-32-0102
32.
Mounaïm-Rousselle
,
C.
,
Mercier
,
A.
,
Brequigny
,
P.
,
Dumand
,
C.
,
Bouriot
,
J.
, and
Houillé
,
S.
,
2022
, “
Performance of Ammonia Fuel in a Spark Assisted Compression Ignition Engine
,”
Int. J. Engine Res.
,
23
(
5
), pp.
781
792
.10.1177/14680874211038726
33.
Westlye
,
F. R.
,
Ivarsson
,
A.
, and
Schramm
,
J.
,
2013
, “
Experimental Investigation of Nitrogen Based Emissions From an Ammonia Fueled SI-Engine
,”
Fuel
,
111
, pp.
239
247
.10.1016/j.fuel.2013.03.055
34.
Northrop
,
W. F.
,
2024
, “
Modeling Nitrogen Species From Ammonia Reciprocating Engine Combustion in Temperature-Equivalence Ratio Space
,”
Appl. Energy Combust. Sci.
,
17
, p.
100245
.10.1016/j.jaecs.2023.100245
35.
Pedersen
,
K. A.
,
Lewandowski
,
M. T.
,
Schulze-Netzer
,
C.
,
Pasternak
,
M.
, and
Løvås
,
T.
,
2023
, “
Ammonia in Dual-Fueled Internal Combustion Engines: Impact on NOx, N2O, and Soot Formation
,”
Energy Fuels
,
37
(
22
), pp.
17585
17604
.10.1021/acs.energyfuels.3c02549
You do not currently have access to this content.