Abstract

Soil moisture content and suction are two key geotechnical properties that are commonly measured by separate moisture and suction sensors, which require double installation efforts and often result in questionable correlation between the measured moisture content and suction. In this study, attempts were made to combine time domain reflectometry (TDR) technique and porous gypsum block functioning as a tensiometer for simultaneous measurements of soil moisture content and suction. A new moisture/suction TDR probe was designed and evaluated in the laboratory. The TDR probe had two parts with one half portion embedded in a gypsum block whose suction is equilibrated with surrounding soils for soil suction measurement. The other half portion of the TDR probe was also inserted into soils to measure moisture content. The probe was calibrated by the pressure plate and filter paper tests to establish a relationship between suction (ψ) and dielectric constant (Ka) of the gypsum block for suction measurement. Three laboratory tests (i.e., staged-drying tests, absorption tests, and desorption tests) were then performed on a silty sand to evaluate the probe performance. It is demonstrated that the probe can measure the soil moisture content and suction satisfactorily in the range 50 kPa < ψ < 10,000 kPa with a response time less than 5 h. Additionally, the probe is fabricated easily and fast, without any additional maintenance, and has a great potential for field measurements of soil moisture content and suction.

References

1.
ASTM D5298-03
2003
,
Standard Test Method for Measurement of Soil Potential (Suction) Using Filter Paper
(Superseded 2016),
ASTM International
,
West Conshohocken, PA
, www.astm.org
2.
ASTM D6836-02(2008)e2
2008
,
Standard Test Methods for Determination of the Soil Water Characteristic Curve for Desorption Using a Hanging Column, Pressure Extractor, Chilled Mirror Hygrometer, and/or Centrifuge
(Superseded 2016),
ASTM International
,
West Conshohocken, PA
, www.astm.org
3.
Baumgartner
,
N.
,
Parkin
,
G.W.
, and
Elrick
,
D.E.
,
1994
, “
Soil Water Content and Potential Measured by Hollow Time Domain Reflectometry Probe
,”
Soil Sci. Soc. Am. J.
, Vol. 
58
, No. 
2
, pp. 
315
318
, https://doi.org/10.2136/sssaj1994.03615995005800020008x
4.
Campbell
,
G.S.
,
Gee
,
G.W.
, and
Klute
,
A.
,
1986
, “
Water Potential: Miscellaneous Methods
,”
Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods
,
Klute
A.
, Ed.,
SSSA
,
Madison, WI
, pp. 
619
633
.
5.
Cassel
,
D.
and
Klute
,
A.
,
1986
, “
Water Potential: Tensiometry
,”
Methods of Soil Analysis: Part 1-Physical and Mineralogical Methods
,
Klute
A.
, Ed.,
SSSA
,
Madison, WI
, pp. 
563
596
.
6.
Chung
,
C.C.
and
Lin
,
C.P.
,
2009
, “
Apparent Dielectric Constant and Effective Frequency of TDR Measurements: Influencing Factors and Comparison
,”
Vadose Zone J.
, Vol. 
8
, No. 
3
, pp. 
548
556
, https://doi.org/10.2136/vzj2008.0089
7.
Davis
,
J.
,
1975
, “
Relative Permittivity Measurements of a Sand and Clay Soil in Situ
,” Paper 75-71 C, Geological Survey of Canada, Ottawa, pp. 
361
363
.
8.
Dirksen
,
C.
and
Dasberg
,
S.
,
1993
, “
Improved Calibration of Time Domain Reflectometry Soil Water Content Measurements
,”
Soil Sci. Soc. Am. J.
, Vol. 
57
, No. 
3
, pp. 
660
667
, https://doi.org/10.2136/sssaj1993.03615995005700030005x
9.
Drnevich
,
V.P.
,
Yu
,
X.
, and
Lovell
,
J.E.
,
2003
, “
Beta Testing Implementation of the Purdue Time Domain Reflectometry (TDR) Method for Soil Water Content and Density Measurement
,” Publication FHWA/IN/JTRP-2003/07, Joint Transportation Research Program, Indiana Department of Transportation and Purdue University, West Lafayette, IN.
10.
Jacobsen
,
O.H.
and
Schjønning
,
P.
,
1993
, “
A Laboratory Calibration of Time Domain Reflectometry for Soil Water Measurement Including Effects of Bulk Density and Texture
,”
J. Hydrol.
, Vol. 
151
, No. 
2
, pp. 
147
157
.
11.
Knight
,
J.
,
1992
, “
Sensitivity of Time Domain Reflectometry Measurements to Lateral Variations in Soil Water Content
,”
Water Resour. Res.
, Vol. 
28
, No. 
9
, pp. 
2345
2352
, https://doi.org/10.1029/92WR00747
12.
Kraus
,
J.
,
1984
,
Electromagnetics
,
McGraw Hill, Inc.
,
USA
.
13.
Lin
,
C.P.
,
2003
, “
Frequency Domain Versus Travel Time Analyses of TDR Waveforms for Soil Moisture Measurements
,”
Soil Sci. Soc. Am. J.
, Vol. 
67
, No. 
3
, pp. 
720
729
, https://doi.org/10.2136/sssaj2003.0720
14.
Noborio
,
K.
,
Horton
,
R.
, and
Tan
,
C.
,
1999
, “
Time Domain Reflectometry Probe for Simultaneous Measurement of Soil Matric Potential and Water Content
,”
Soil Sci. Soc. Am. J.
, Vol. 
63
, No. 
6
, pp. 
1500
1505
, https://doi.org/10.2136/sssaj1999.6361500x
15.
Pan
,
H.
,
Qing
,
Y.
, and
Pei-yong
,
L.
,
2010
, “
Direct and Indirect Measurement of Soil Suction in the Laboratory
,”
Electron. J. Geotech. Eng.
, Vol. 
15
, No. 
3
, pp. 
1
14
.
16.
Patil
,
U.D.
,
2014
, “
Response of Unsaturated Silty Sand over a Wider Range of Suction States Using a Novel Double-Walled Tri-Axial Testing System
,” Ph.D. Thesis,
University of Texas at Arlington
, Arlington, TX.
17.
Petersen
,
L.W.
,
Thomsen
,
A.
,
Moldrup
,
P.
,
Jacobsen
,
O.H.
, and
Rolston
,
D.
,
1995
, “
High-Resolution Time Domain Reflectometry: Sensitivity Dependency on Probe Design
,”
Soil Sci.
, Vol. 
159
, No. 
3
, pp. 
149
154
, https://doi.org/10.1097/00010694-199503000-00001
18.
Rawlins
,
S.L.
and
Campbell
,
G.S.
,
1986
, “Water Potential: Thermocouple Psychometry,”
Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods
,
Klute
A.
, Ed.,
SSSA
,
Madison, WI
, pp. 
597
618
.
19.
Robinson
,
D.A.
,
Jones
,
S.B.
,
Wraith
,
J.M.
,
Or
,
D.
, and
Friedman
,
S.P.
,
2003
, “
A Review of Advances in Dielectric and Electrical Conductivity Measurement in Soils Using Time Domain Reflectometry
,”
Vadose Zone J.
, Vol. 
2
, No. 
4
, pp. 
444
475
, https://doi.org/10.2136/vzj2003.4440
20.
Topp
,
G.
,
Davis
,
J.
, and
Annan
,
A.P.
,
1980
, “
Electromagnetic Determination of Soil Water Content: Measurements in Coaxial Transmission Lines
,”
Water Resour. Res.
, Vol. 
16
, No. 
3
, pp. 
574
582
, https://doi.org/10.1029/WR016i003p00574
21.
Topp
,
G.
,
Davis
,
J.
, and
Annan
,
A.P.
,
1982
, “
Electromagnetic Determination of Soil Water Content Using TDR: II. Evaluation of Installation and Configuration of Parallel Transmission Lines
,”
Soil Sci. Soc. Am. J.
, Vol. 
46
, No. 
4
, pp. 
678
684
, https://doi.org/10.2136/sssaj1982.03615995004600040003x
22.
Van Genuchten
,
M.T.
,
1980
, “
A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils
,”
Soil Sci. Soc. Am. J.
, Vol. 
44
, No. 
5
, pp. 
892
898
, https://doi.org/10.2136/sssaj1980.03615995004400050002x
23.
Whalley
,
W.
,
Leeds-Harrison
,
P.
,
Joy
,
P.
, and
Hoefsloot
,
P.
,
1994
, “
Time Domain Reflectometry and Tensiometry Combined in an Integrated Soil Water Monitoring System
,”
J. Agric. Eng. Res.
, Vol. 
59
, No. 
2
, pp. 
141
144
, https://doi.org/10.1006/jaer.1994.1071
24.
Yu
,
X.
and
Drnevich
,
V.P.
,
2004
, “
Soil Water Content and Dry Density by Time Domain Reflectometry
,”
J. Geotech. Geoenviron. Eng.
, Vol. 
130
, No. 
9
, pp. 
922
934
, https://doi.org/10.1061/(ASCE)1090-0241(2004)130:9(922)
25.
Yu
,
X.
,
Zhang
,
N.
, and
Pradhan
,
A.
,
2014
, “
Development and Evaluation of a Thermo-TDR Probe
,”
Soil Behav. Geomech.
, pp. 
434
444
.
26.
Yu
,
X.
,
Pradhan
,
A.
,
Zhang
,
N.
,
Thapa
,
B.
, and
Tjuatja
,
S.
,
2014
, “
Thermo-TDR Probe for Measurement of Soil Moisture, Density, and Thermal Properties
,” presented at
Geo-Congress 2014
, Atlanta, GA, American Society of Civil Engineers, Reston, VA, pp. 
2804
2813
.
27.
Yu
,
X.
,
Zhang
,
N.
,
Pradhan
,
A.
,
Thapa
,
B.
, and
Tjuatja
,
S.
,
2015
, “
Design and Evaluation of a Thermo-TDR Probe for Geothermal Applications
,”
Geotech. Test. J.
, Vol. 
38
, No. 
6
, pp. 
864
877
.
28.
Zhang
,
N.
,
2015
, “
Development and Validation of TDR-Based Sensors for Thermal Conductivity and Soil Suction Measurements
,” Ph.D. Thesis,
University of Texas at Arlington
, Arlington, TX.
This content is only available via PDF.
You do not currently have access to this content.