Abstract

Experiments were conducted to compare two sensing techniques for measuring thermal conductivity of unsaturated soils: (i) a modified transient plane source (MTPS) method for non-destructive measurements using a planar, interfacial heat reflectance sensor, and (ii) a transient line source (TLS-SP) method utilizing an embedded single-probe heat source. Measurement protocols for coarse-grained and fine-grained soils were developed. Thermal conductivity dry-out curves (TCDCs) were measured for five soil types, including poorly graded sand, well-graded sand with silt, silty sand, silt, and clay. The MTPS sensor consistently produced higher thermal conductivity for degrees of saturation greater than about 50 % but lower thermal conductivity for saturations less than 50 %. Saturated thermal conductivity measured using the MTPS sensor ranged from 8 % to 26 % greater than values measured using the TLS-SP sensor. Dry thermal conductivity measurements were comparable (<5 % difference) for fine-grained soils but were consistently and appreciably greater using the TLS-SP for coarse-grained soils. Mechanisms responsible for these differences include thermally induced water migration, latent heat transfer, sensor-soil contact resistance, gravity-induced water migration, and specimen heterogeneity. Secondary experiments indicated that the effects of gravity-induced water migration were insignificant within the short (<5 min) time frame elapsed between sample preparation and measurement.

References

1.
ASTM C1045-07(2013)
2013
,
Standard Practice for Calculating Thermal Transmission Properties Under Steady-State Conditions
,
ASTM International
,
West Conshohocken, PA
, www.astm.org
2.
ASTM C177
2013
,
Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus
,
ASTM International
,
West Conshohocken, PA
, www.astm.org
3.
ASTM D4318-10e1
2010
,
Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils
,
ASTM International
,
West Conshohocken, PA
, www.astm.org
4.
ASTM D5334-08
2008
,
Standard Test Method for Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure
(Superseded by ASTM D5334–14),
ASTM International
,
West Conshohocken, PA
, www.astm.org
5.
ASTM D698-12e2
2012
,
Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3 (600 kN-m/m3))
,
ASTM International
,
West Conshohocken, PA
, www.astm.org
6.
ASTM D854-14
2014
,
Specific Gravity of Soil Solids by Water Pycnometer
,
ASTM International
,
West Conshohocken, PA
, www.astm.org
7.
Bareither
,
C.
,
Edil
,
T.
,
Benson
,
C.
, and
Mickelson
,
D.
,
2008
, “
Geological and Physical Factors Affecting the Friction Angle of Compacted Sands
,”
J. Geotech. Geoenviron. Eng.
, Vol. 
134
, No. 
10
, pp. 
1476
1489
, https://doi.org/10.1061/(ASCE)1090-0241(2008)134:10(1476)
8.
Bouguerra
,
A.
,
Laurent
,
J.P.
,
Goual
,
M.S.
, and
Queneudec
,
M.
,
1997
, “
The Measurement of the Thermal Conductivity of Solid Aggregates using the Transient Plane Source Technique
,”
J. Phys. D: Appl. Phys.
, Vol. 
30
, No. 
20
, pp. 2900, https://doi.org/10.1088/0022-3727/30/20/018
9.
Boumaza
,
T.
and
Redgrove
,
J.
,
2003
, “
Use of the Transient Plane Source Technique for Rapid Multiple Thermal Property Measurements
,”
Int. J. Thermophys.
, Vol. 
24
, No. 
2
, pp. 
501
512
, https://doi.org/10.1023/A:1022928206859
10.
Bristow
,
K.L.
,
2002
, “
5.3 Thermal Conductivity
,”
Methods of Soil Analysis: Part 4. Physical Methods, Soil Science Society of America Book Series 5
,
Dane
J.H.
and
Topp
G.C.
, Eds.,
Soil Society of America
,
Madison, WI
, pp. 
1209
1226
, https://doi.org/10.2136/sssabookser5.4.c50
11.
Bristow
,
K.L.
,
1998
, “
Measurement of Thermal Properties and Water Content of Unsaturated Sandy Soil using Dual-Probe Heat-Pulse Probes
,”
Agric. For. Meteorol
, Vol. 
89
, No. 
2
, pp. 
75
84
, https://doi.org/10.1016/S0168-1923(97)00065-8
12.
Bristow
,
K.L.
,
Kluitenberg
,
G.J.
, and
Horton
,
R.
,
1994
, “
Measurement of Soil Thermal Properties with a Dual-Probe Heat-Pulse Technique
,”
Soil Sci. Soc. Am. J.
, Vol. 
58
, No. 
5
, pp. 
1288
1294
, https://doi.org/10.2136/sssaj1994.03615995005800050002x
13.
Campbell
,
G.S.
,
Jungbauer
,
J.D.
,
Bidlake
,
W.R.
, and
Hungerford
,
R.D.
,
1994
, “
Predicting the Effect of Temperature on Soil Thermal Conductivity
,”
Soil Sci.
, Vol. 
158
, No. 
5
, pp. 
307
313
, https://doi.org/10.1097/00010694-199411000-00001
14.
Carslaw
,
H.S.
and
Jaeger
,
J.C.
,
1959
,
Conduction of Heat in Solids
, 2nd ed.,
Oxford University Press
,
Oxford, London
.
15.
Côté
,
J.
and
Konrad
,
J.M.
,
2005
, “
A Generalized Thermal Conductivity Model for Soil and Construction Materials
,”
Can. Geotech. J.
, Vol. 
42
, No. 
2
, pp. 
443
458
, https://doi.org/10.1139/t04-106
16.
C-Therm Technologies
2015
, “
C-Therm TCi Operator Manual
,”
C-Therm Technologies, Ltd.
,
Fredericton, NB Canada
.
17.
Decagon Devices
2014
, “
KD2 Pro Thermal Properties Analyzer
,”
Operator’s Manual
,
Decagon Devices, Inc.
,
Pullman WA
.
18.
de Vries
,
D.A.
,
1963
, “
Thermal Properties of Soils
,”
Physics of Plant Environment
,
van Wijk
W.R.
, Ed.,
North Holland Pub. Co.
,
Amsterdam, the Netherlands
, pp. 
210
235
.
19.
de Vries
,
D.A.
,
1952
, “
A Nonstationary Method for Determining Thermal Conductivity of Soil In Situ
,”
Soil Sci.
, Vol. 
73
, No. 
2
, pp. 
83
90
.
20.
Farouki
,
O.T.
,
1981
, “
Thermal Properties of Soils
,”
CRREL Monograph 81-1
,
U.S. Army COE, Cold Regions Research and Engineering Laboratory
,
Hanover, NH
.
21.
Fillion
,
M.-H.
,
Côté
,
J.
, and
Konrad
,
J.-M.
,
2011
, “
Thermal Radiation and Conduction Properties of Materials Ranging from Sand to Rock-Fill
,”
Can. Geotech. J.
, Vol. 
48
, No. 
4
, pp. 
532
542
, https://doi.org/10.1139/t10-093
22.
Gurdal
,
T.
,
Benson
,
C.
, and
Albright
,
W.
,
2003
, “
Hydrologic Properties of Final Cover Soils from the Alternative Cover Assessment Program
,”
Geo. Eng. Rep.
, No. 03-02, Geo Engineering Program, University of Wisconsin-Madison.
23.
Gustafsson
,
S.E.
,
1991
, “
Transient Plane Source Techniques for Thermal Conductivity and Thermal Diffusivity Measurements of Solid Materials
,”
Rev. Sci. Instrum.
, Vol. 
62
, No. 
3
, pp. 
797
804
, https://doi.org/10.1063/1.1142087
24.
IEEE 442-1981
2003
,
IEEE Guide for Soil Thermal Resistivity Measurements
,
IEEE Power and Energy Society
,
Piscataway, NJ
.
25.
Johansen
,
O.
,
1975
, “
Thermal Conductivity of Soils
,” Ph.D. thesis,
Institute for Kjoleteknikk
, Trondheim, Norway.
26.
Krupa
,
P.
and
Malinarič
,
S.
,
2014
, “
Using the Transient Plane Source Method for Measuring Thermal Parameters of Electroceramics
,” presented at the
16th International Conference on Thermophysics and Heat Transfer
, May 15–16, 2014, Amsterdam, the Netherlands,
World Academy of Science, Engineering and Technology, International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering
, Vol. 
8
, No. 
5
, pp. 
733
738
.
27.
Likos
,
W.
,
Olson
,
H.
, and
Jaafar
,
R.
,
2012
, “
Comparison of Laboratory Methods for Measuring Thermal Conductivity of Unsaturated Soils
,” presented at the
GeoCongress 2012
, Oakland, CA,
Geotechnical Special Publication, ASCE, Reston, VA
, pp. 
4366
4375
, https://doi.org/10.1061/9780784412121.449
28.
Likos
,
W.J.
,
2014
, “
Modeling Thermal Conductivity Dryout Curves from Soil-Water Characteristic Curves
,”
J. Geotech. Geoenviron. Eng.
, Vol. 
140
, No. 
5
, pp. 
1
11
, https://doi.org/10.1061/(ASCE)GT.1943-5606.0001078
29.
Likos
,
W.J.
,
2015
, “
Pore-Scale Model for Thermal Conductivity of Unsaturated Sand
,”
J. Geotech. Geo. Eng.
, Vol. 
33
, No. 
2
, pp. 
179
192
, https://doi.org/10.1007/s10706-014-9744-9
30.
Log
,
T.
and
Gustafsson
,
S.E.
,
1995
, “
Transient Plane Source (TPS) Technique for Measuring Thermal Transport Properties of Building Materials
,”
Fire Mater.
, Vol. 
19
, No. 
1
, pp. 
43
49
, https://doi.org/10.1002/fam.810190107
31.
Lu
,
N.
and
Dong
,
Y.
,
2015
, “
Closed-Form Equation for Thermal Conductivity of Unsaturated Soils at Room Temperature
,”
J. Geotech. Geoenviron. Eng.
, Vol. 
141
, No. 
6
, 04015016, https://doi.org/10.1061/(ASCE)GT.1943-5606.0001295
32.
Mathis
,
N.E.
,
1999
, “
New Transient Non-Destructive Technique Measures Thermal Effusivity and Diffusivity
,” presented at the
25th International Thermal Conductivity Conference
, Ann Arbor, MI,
Technomic Publishing Co.
, Lancaster, PA, pp. 
3
14
.
33.
Presley
,
M.A.
and
Christensen
,
P.R.
,
1997
, “
Thermal Conductivity Measurements of Particulate Materials 2. Results
,”
J. Geophys. Res.
, Vol. 
102
, No. 
E3
, pp. 
6551
6566
, https://doi.org/10.1029/96JE03303
34.
Rides
,
M.
,
Morikawa
,
J.
,
Halldahl
,
L.
,
Hay
,
B.
,
Lobo
,
H.
,
Dawson
,
A.
, and
Allen
,
C.
,
2009
, “
Intercomparison of Thermal Conductivity and Thermal Diffusivity Methods for Plastics
,”
Polym. Test.
, Vol. 
28
, No. 
5
, pp. 
480
489
, https://doi.org/10.1016/j.polymertesting.2009.03.002
35.
Sepaskhah
,
A.R.
and
Boersma
,
L.
,
1979
, “
Thermal Conductivity of Soils as a Function of Temperature and Water Content
,”
Soil Sci. Soc. Am. J.
, Vol. 
43
, No. 
3
, pp. 
439
444
, https://doi.org/10.2136/sssaj1979.03615995004300030003x
36.
Shahraeeni
,
E.
and
Or
,
D.
,
2012
, “
Pore Scale Mechanisms for Enhanced Vapor Transport through Partially Saturated Porous Media
,”
Water Resour. Res.
, Vol. 
48
, No. 
5
, W05511, https://doi.org/10.1029/2011WR011036
37.
Shiozawa
,
S.
and
Campbell
,
G.S.
,
1990
, “
Soil Thermal Conductivity
,”
Remote Sens. Rev.
, Vol. 
5
, No. 
1
, pp. 
301
310
, https://doi.org/10.1080/02757259009532137
38.
Smits
,
K.M.
,
Sakaki
,
T.
,
Howington
,
S.E.
,
Peters
,
J.F.
, and
Illangasekare
,
T.H.
,
2013
, “
Temperature Dependence of Thermal Properties of Sands across a Wide Range of Temperatures (30–70C)
,”
Vadose Zone J.
, Vol. 
12
, No. 
1
, https://doi.org/10.2136/vzj2012.0033
39.
Smits
,
K.M.
,
Sakaki
,
T.
,
Limsuwat
,
A.
, and
Illangasekare
,
T.H.
,
2010
, “
Thermal Conductivity of Sands under Varying Moisture and Porosity in Drainage—Wetting Cycles
,”
Vadose Zone J.
, Vol. 
9
, No. 
1
, pp. 
1
9
, https://doi.org/10.2136/vzj2009.0095
40.
Stålhane
,
B.
and
Pyk
,
S.
,
1931
, “
Ny metod för bestämning av örmeledningskoefficienter (New Method for Determining the Coefficients of Thermal Conductivity), Teknisk Tidskrift 28 (Svenska Teknologföreningen).
,”
Tek. Tidskr.
, Vol. 
61
, No. 
28
, pp. 
389
393
, http://web.archive.org/web/20170807165823/http://runeberg.org/tektid/1931a/0399.html, https://doi.org/10.4028/www.scientific.net/AMM.584-586.2133
41.
Thermtest
2016
, “
Thermal Constants Analyzer-Hot Disk TPS 3500
,” TPS3500 Brochure,
Thermtest Inc.
,
Fredericton, NB Canada
.
42.
van Genuchten
,
M.T.
,
1980
, “
A Closed Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils
,”
Soil Sci. Soc. Amer. J.
, Vol. 
44
, No. 
5
, pp. 
892
890
.
43.
Woodward
,
N.R.
,
Tinjum
,
J.M.
, and
Wu
,
R.
,
2013
, “
Water Migration Impacts on Thermal Resistivity Testing Procedures
,”
Geotech. Test. J.
, Vol. 
36
, No. 
6
, pp.
1
8
, https://doi.org/10.1520/GTJ20120151
44.
Yao
,
J.
,
Oh
,
H.
,
Likos
,
W.J.
, and
Tinjum
,
J.M.
,
2014
, “
Three Laboratory Methods for Measuring Thermal Resistivity Dryout Curves of Coarse-Grained Soils
,”
Geotech. Test. J.
, Vol. 
37
, No. 
6
, pp. 
1056
1067
, https://doi.org/10.1520/GTJ20140120
45.
Yun
,
T.S.
and
Santamarina
,
J.C.
,
2008
, “
Fundamental Study of Thermal Conduction in Dry Soils
,”
Granular Matter
, Vol. 
10
, pp. 
197
207
, https://doi.org/10.1007/s10035-007-0051-5
46.
Yüksel
,
N.
,
2016
, “
The Review of Some Commonly Used Methods and Techniques to Measure the Thermal Conductivity of Insulation Materials
,”
Insul. Mater. Context of Sustainability
,
Almusaed
Amjad
, Ed.,
Intech
, https://doi.org/10.5772/64157
This content is only available via PDF.
You do not currently have access to this content.