Abstract

Monopile foundations for offshore wind turbines (OWTs) are exposed to long-term dynamic loads from wind and waves. Hence, the long-term dynamic behavior of a monopile supported OWT is necessary for the sake of stability during the serviceable period. To assess the safety of the system, the serviceability limit state regarding the allowable tilt of the monopile at mudline is satisfied, and the fundamental frequency of the system is kept away from the rotor and blade passing frequencies. The present study investigates the long-term performance of monopile supported OWT in clay using a series of scaled model tests. The fundamental frequency and damping of an OWT system and the rotation and lateral deflection of a monopile head are examined for various load cycles with different amplitudes. The effect of long-term loading cycles and amplitude on the soil-pile stiffness is evaluated. It is observed that the fundamental frequency of the system decreases with the number of load cycles, whereas damping of the whole system is increased. The responses regarding accumulated rotation and deflection at monopile head are found to be increasing with the number of load cycles. For the numerical simulation, soil is modeled as viscoelastic material with a stiffness degradation function in three-dimensional finite element analysis. Finally, the fundamental frequency and response of the OWT obtained from the model test are validated with numerical results. A good agreement is observed between experimental and numerical results.

References

1.
Achmus
,
M.
,
Kuo
,
Y.
, and
Rahman
,
K.A.
,
2009
, “
Behavior of Monopile Foundations Under Cyclic Lateral Load
,”
Comput. Geotech.
, Vol. 
36
, No. 
5
, pp. 
725
735
, https://doi.org/10.1016/j.compgeo.2008.12.003
2.
Adhikari
,
S.
and
Bhattacharya
,
S.
,
2012
, “
Dynamic Analysis of Wind Turbine Towers on Flexible Foundations
,”
Shock Vibr.
, Vol. 
19
, No. 
1
, pp. 
37
56
, https://doi.org/10.1155/2012/408493
3.
Andersen
,
L.V.
,
Vahdatirad
,
M.J.
,
Sichani
,
M.T.
, and
Sørensen
,
J.D.
,
2012
, “
Natural Frequencies of Wind Turbines on Monopile Foundations in Clayey Soils—A Probabilistic Approach
,”
Comput. Geotech.
, Vol. 
43
, pp. 
1
11
, https://doi.org/10.1016/j.compgeo.2012.01.010
4.
Bhattacharya
,
S.
,
2014
, “
Challenges in Design of Foundations for Offshore Wind Turbines
,”
Eng. Technol. Ref.
, pp. 
1
9
, https://doi.org/10.1049/etr.2014.0041
5.
Bhattacharya
,
S.
and
Adhikari
,
S.
,
2011
, “
Experimental Validation of Soil-Structure Interaction of Offshore Wind Turbines
,”
Soil Dyn. Earthquake Eng.
, Vol. 
31
, Nos. 
5–6
, pp. 
805
816
, https://doi.org/10.1016/j.soildyn.2011.01.004
6.
Bhattacharya
,
S.
,
Lombardi
,
D.
, and
Wood
,
D.M.
,
2011
, “
Similitude Relationships for Physical Modelling of Monopile-Supported Offshore Wind Turbines
,”
Int. J. Phys. Modell. Geotech.
, Vol. 
11
, No. 
2
, pp. 
58
68
, https://doi.org/10.1680/ijpmg.2011.11.2.58
7.
Bhattacharya
,
S.
,
Cox
,
J.A.
,
Lombardi
,
D.
, and
Wood
,
D.M.
,
2013
, “
Dynamics of Offshore Wind Turbines Supported on Two Foundations
,”
Proc. Inst. Civ. Eng. Geotech. Eng.
, Vol. 
166
, No. 
GE2
, pp. 
159
169
.
8.
Bhattacharya
,
S.
,
Nikitas
,
N.
,
Garnsey
,
J.
,
Alexander
,
N.A.
,
Cox
,
J.
,
Lombardi
,
D.
,
Wood
,
D.M.
, and
Nash
,
D.F. T.
,
2013
, “
Observed Dynamic Soil-Structure Interaction in Scale Testing of Offshore Wind Turbine Foundations
,”
Soil Dyn. Earthquake Eng.
, Vol. 
54
, pp. 
47
60
, https://doi.org/10.1016/j.soildyn.2013.07.012
9.
Bisoi
,
S.
and
Haldar
,
S.
,
2014
, “
Dynamic Analysis of Offshore Wind Turbine in Clay Considering Soil-Monopile-Tower Interaction
,”
Soil Dyn. Earthquake Eng.
, Vol. 
63
, pp. 
19
35
, https://doi.org/10.1016/j.soildyn.2014.03.006
10.
Boulanger
,
R.W.
,
Curras
,
C.J.
,
Kutter
,
B.L.
,
Wilson
,
D.W.
, and
Abghari
,
A.
,
1999
, “
Seismic Soil-Pile-Structure Interaction Experiments and Analyses
,”
J. Geotech. Geoenviron. Eng.
, Vol. 
125
, No. 
9
, pp. 
750
759
, https://doi.org/10.1061/(ASCE)1090-0241(1999)125:9(750)
11.
Bouzid
,
Dj.A.
,
Bhattacharya
,
S.
, and
Dash
,
S.R.
,
2013
, “
Winkler Springs (p-y Curves) for Pile Design from Stress-Strain of Soils: FE Assessment of Scaling Coefficients Using the Mobilized Strength Design Concept
,”
Geomech. Eng.
, Vol. 
5
, No. 
5
, pp. 
379
399
, https://doi.org/10.12989/gae.2013.5.5.379
12.
Chen
,
R.-P.
,
Sun
,
Y.-X.
,
Zhu
,
B.
, and
Guo
,
W.D.
,
2015
, “
Lateral Cyclic Pile-Soil Interaction Studies on a Rigid Model Monopile
,”
Proc. Inst. Civ. Eng. Geotech. Eng.
, Vol. 
168
, No. 
2
, pp. 
120
130
, https://doi.org/10.1680/geng.14.00028
13.
COMSOL
2013
,
COMSOL Multiphysics User’s Guide
, Version 4.3b Edition,
COMSOL
,
United States
.
14.
Cuéllar
,
P.
,
Mira
,
P.
,
Pastor
,
M.
,
Merodo
,
J.A. F.
,
Baeßbler
,
M.
, and
Rücker
,
W.
,
2014
, “
A Numerical Model for the Transient Analysis of Offshore Foundations Under Cyclic Loading
,”
Comput. Geotech.
, Vol. 
59
, pp. 
75
86
, https://doi.org/10.1016/j.compgeo.2014.02.005
15.
Damgaard
,
M.
,
Ibsen
,
L.B.
,
Andersen
,
L.V.
, and
Andersen
,
J.K. F.
,
2013
, “
Cross-Wind Modal Properties of Offshore Wind Turbines Identified by Full Scale Testing
,”
J. Wind Eng. Ind. Aerodyn.
, Vol. 
116
, pp. 
94
108
, https://doi.org/10.1016/j.jweia.2013.03.003
16.
DNV-OS-J101
2013
,
Design of Offshore Wind Turbine Structures
,
DET NORSKE VERITAS
, Oslo, Norway, www.dnv.com
17.
Dobry
,
R.
and
Vucetic
,
M.
,
1987
, “
Dynamic Properties and Seismic Response of Soft Clay Deposits
,” presented at the
International Symposium on Geotechnical Engineering of Soft Soils
, Mexico City, Mexico,
Rensselaer Polytechnic Institute
,
Troy, NY
, pp. 
51
87
.
18.
El Naggar
,
M.H.
and
Bentley
,
K.J.
,
2000
, “
Dynamic Analysis for Laterally Loaded Piles and Dynamic p-y Curves
,”
Can. Geotech. J.
, Vol. 
37
, No. 
6
, pp. 
1166
1183
, https://doi.org/10.1139/t00-058
19.
Feld
,
T.
,
2001
, “
Suction Buckets, A New Innovative Foundation Concept, Applied to Offshore Wind Turbines
,” Ph.D. thesis,
Aalborg University
, Aalborg, Denmark.
20.
Guo
,
Z.
,
Yu
,
L.
,
Wang
,
L.
,
Bhattacharya
,
S.
,
Nikitas
,
G.
, and
Xing
,
Y.
,
2015
, “
Model Tests on the Long-Term Dynamic Performance of Offshore Wind Turbines Founded on Monopiles in Sand
,”
J. Offshore Mech. Arct. Eng.
, Vol. 
137
, No. 
4
, pp. 
1
11
, https://doi.org/10.1115/1.4030682
21.
GWEC
2013
,
Indian Wind Energy Outlook 2013
,
Global Wind Energy Council
,
Brussels, Belgium
.
22.
Idriss
,
I.M.
,
Dobry
,
R.
, and
Singh
,
R.D.
,
1978
, “
Nonlinear Behavior of Soft Clays During Cyclic Loading
,”
J. Geotech. Eng. Div.
, Vol. 
104
, No. 
12
, pp. 
1427
1447
.
23.
Ilyas
,
T.
,
Leung
,
C.F.
,
Chow
,
Y.K.
, and
Budi
,
S.S.
,
2004
, “
Centrifuge Model Study of Laterally Loaded Pile Groups in Clay
,”
J. Geotech. Geoenviron. Eng.
, Vol. 
130
, No. 
3
, pp. 
274
283
, https://doi.org/10.1061/(ASCE)1090-0241(2004)130:3(274)
24.
Lau
,
B.H.
,
2015
, “
Foundations for Offshore Wind Turbines in Clay
,” Ph.D. thesis,
University of Cambridge
, Cambridge, UK.
25.
LeBlanc
,
C.
,
Houlsby
,
G.T.
, and
Byrne
,
B.W.
,
2010
, “
Response of Stiff Piles in Sand to Long-Term Cyclic Lateral Loading
,”
Geotech.
, Vol. 
60
, No. 
2
, pp. 
79
90
, https://doi.org/10.1680/geot.7.00196
26.
Lesny
,
K.
and
Wiemann
,
J.
,
2006
, “
Finite-Element-Modelling of Larger Diameter Monopiles for Offshore Wind Energy Converters
,” presented at the
GeoCongress
, Atlanta, GA,
Geo-Institute of the ASCE
,
Reston, VA
.
27.
Lombardi
,
D.
,
2010
, “
Dynamics of Offshore Wind Turbines
,” M.S. thesis,
University of Bristol
, Bristol, UK.
28.
Lombardi
,
D.
,
Bhattacharya
,
S.
, and
Wood
,
D.M.
,
2013
, “
Dynamic Soil-Structure Interaction of Monopile Supported Wind Turbines in Cohesive Soil
,”
Soil Dyn. Earthquake Eng.
, Vol. 
49
, pp. 
165
180
, https://doi.org/10.1016/j.soildyn.2013.01.015
29.
Meymand
,
P.J.
,
1998
, “
Shanking Table Scale Model Tests of Nonlinear Soil-Pile-Superstructure Interaction in Soft Clay
,” Ph.D. thesis,
University of California
, Berkeley, Berkeley, CA.
30.
Poulos
,
H.
and
Hull
,
T.
,
1989
, “
The Role of Analytical Geomechanics in Foundation Engineering
,”
Foundation Engineering: Current Principles and Practices, Volume 2
,
Kulhawy
F.H.
, Ed.,
ASCE
,
Reston, VA
, pp. 
1578
1606
.
31.
Rajashree
,
S.S.
and
Sundaravadivelu
,
R.
,
1996
, “
Degradation Model for One-Way Cyclic Lateral Load on Piles in Soft Clay
,”
Comput. Geotech.
, Vol. 
19
, No. 
4
, pp. 
289
300
, https://doi.org/10.1016/S0266-352X(96)00008-0
32.
Senanayake
,
A.I. M. J.
,
2016
, “
Design of Large Diameter Monopiles for Offshore Wind Turbines in Clay
,” Ph.D thesis,
The University of Texas at Austin
, Austin, TX.
33.
Towhata
,
I.
,
2008
,
Geotechnical Earthquake Engineering
,
Springer-Verlag Berlin Heidelberg
,
New York, NY
.
34.
Wiemann
,
J.
,
Lesny
,
K.
, and
Richwien
,
W.
,
2004
, “
Evaluation of Pile Diameter Effects on Soil Pile Stiffness
,” presented at
DEWEK 2004, the International Technical Wind Energy Conference
,
Wilhelmshaven
,
Germany
.
35.
Yu
,
L.Q.
,
Wang
,
L.-Z.
,
Guo
,
Z.
,
Bhattacharya
,
S.
,
Nikitas
,
G.
,
Li
,
L.-L.
, and
Xing
,
Y.-L.
,
2015
, “
Long-Term Dynamic Behavior of Monopile Supported Offshore Wind Turbines in Sand
,”
Theor. Appl. Mech. Lett.
, Vol. 
5
, No. 
2
, pp. 
80
84
, https://doi.org/10.1016/j.taml.2015.02.003
36.
Yun
,
T.S.
,
Lee
,
J.-S.
,
Lee
,
S.-C.
,
Kim
,
Y.J.
, and
Yoon
,
H.-K.
,
2011
, “
Geotechnical Issues Related to Renewable Energy
,”
KSCE J. Civ. Eng.
, Vol. 
15
, No. 
4
, pp. 
635
642
, https://doi.org/10.1007/s12205-011-0004-8
37.
Zaaijer
,
M.B.
and
Henderson
,
A.R.
,
2004
, “
Review of Current Activities in Offshore Wind Energy
,” presented at the
14th International Offshore and Polar Engineering Conference
, Toulon, France,
International Society of Offshore and Polar Engineering
,
Mountain View, CA
.
This content is only available via PDF.
You do not currently have access to this content.