Abstract

Flow drag and heat transfer reduction phenomena of non-ionic aqueous surfactant solutions flowing in helical and straight pipes have been experimentally investigated at surfactant solution concentration range of 250-5000ppm and temperature range of 5-20°C. The helically coiled pipes have curvature ratios range of 0.018–0.045. Experimental findings indicate that the friction factors and the heat transfer coefficients of the surfactant solution in helical pipes are significantly higher than in a straight pipe and lower than Newtonian fluid flow like water through the same coils in the turbulent drag reduction region. Drag reduction and heat transfer reduction increase with an increase in surfactant solution concentration and temperature in the measured concentration and temperature ranges. On the other hand, they decrease with increasing of the curvature ratio. A set of empirical expressions for predicting the friction factor and the average Nusselt number for the surfactant solution’s flow through helical and straight pipes have been regressed based on the obtained data in the present experiments.

1.
Zakin
,
J. L.
,
Lu
,
B.
, and
Bewersdorff
,
H. W.
, 1998, “
Surfactant Drag Reduction
,”
Rev. Chem. Eng.
0167-8299,
14
, pp.
253
320
.
2.
Inaba
,
H.
, 2000, “
New Challenge in Advanced Thermal Energy Transportation Using Functionally Thermal Fluids
,”
Int. J. Therm. Sci.
1290-0729,
l39
, pp.
991
1003
.
3.
Qi
,
Y.
,
Kawaguchi
,
Y.
,
Christensen
,
R.
, and
Zakin
,
J. L.
, 2003, “
Enhancing Heat Transfer Ability of Drag Reducing Surfactant Solutions With Static Mixers and Honeycombs
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
5161
5173
.
4.
Bejan
,
A.
, and
Kraus
,
A. D.
, 2003,
Heat Transfer Handbook
,
Wiley
,
New Jersey
, pp.
1088
1091
.
5.
Zhou
,
Y.
, and
Shah
,
S. N.
, 2004, “
Rheological Properties and Friction Pressure Loss of Drilling, Completion, and Stimulation Fluids in Coiled Tubing
,”
ASME J. Fluids Eng.
0098-2202,
126
, pp.
153
161
.
6.
Xin
,
R. C.
, and
Ebadian
,
M. A.
, 1997, “
The Effects of Prandtl Numbers on Local and Average Convective Heat Transfer Characteristics in Helical Pipes
,”
ASME J. Heat Transfer
0022-1481,
119
, pp.
467
473
.
7.
Bai
,
B.
,
Guo
,
L.
,
Feng
,
Z.
, and
Chen
,
X.
, 1999, “
Turbulent Heat Transfer in a Horizontal Helically Coild Tube
,”
Heat Transfer Asian Res.
1099-2871,
28
, pp.
395
403
.
8.
Moffat
,
R. J.
, 1988, “
Describing Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
0894-1777,
1
, pp.
3
17
.
9.
Nakata
,
T.
,
Inaba
,
H.
,
Horibe
,
A.
,
Haruki
,
N.
, and
Sato
,
K.
, 2004, “
The Influence of Impurities in a Water Solution with Drag Reducing Surfactants on the Flow Drag Reduction and a Recovering Method of its Decreased Drag Reduction Effect
,”
Trans. JSRAE
,
21
(
1
), pp.
33
43
.
10.
Bewersdorff
,
H. W.
, and
Ohlendorf
,
D.
, 1988, “
The Behavior of Drag-Reducing Cationic Surfactant Solutions
,”
Cell Calcium
0143-4160,
266
, pp.
941
953
.
11.
Rose
,
G. D.
, and
Foster
,
K. L.
, 1989, “
Drag Reduction and Rheological Properties of Cationic Viscoelastic Surfactant Formulations
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
31
, pp.
59
85
.
12.
Gyr
,
A.
, and
Bewersdorff
,
H. W.
, 1995,
Drag Reduction of Turbulent Flows by Additives
,
Kluwer
,
Dordrecht, The Netherlands
.
13.
Lu
,
B.
,
Li
,
X.
,
Talmon
,
Y.
, and
Zakin
,
J. L.
, 1997, “
A Non-Viscoelastic Drag Reducing Cationic Surfactant System
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
71
, pp.
59
72
.
14.
Pinho
,
F. T.
, 2003, “
A GNF Framework for Turbulent Flow Models of Drag Reducing Fluids and Proposal for a k‐ε Type Closure
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
114
, pp.
149
184
.
15.
Cho
,
Y. I.
, and
Hartnett
,
J. P.
, 1982, “
Non-Newtonian Fluids in Circular Pipe Flow
,”
Adv. Heat Transfer
0065-2717,
15
, pp.
59
141
.
16.
Manlapaz
,
R. L.
, and
Churchill
,
S. W.
, 1980, “
Fully Developed Laminar Flow in a Helically Coiled Tube of Finite Pitch
,”
Chem. Eng. Commun.
0098-6445,
7
, pp.
57
78
.
17.
Mishra
,
P.
, and
Gupta
,
S. N.
, 1979, “
Momentum Transfer in Curved Pipes: Newtonian Fluids
,”
Ind. Eng. Chem. Process Des. Dev.
0196-4305,
18
, pp.
130
137
.
18.
Ito
,
H.
, 1959, “
Friction Factors for Turbulent Flow in Curved Pipes
,”
ASME J. Basic Eng.
0021-9223,
81
, pp.
123
134
.
19.
Zakin
,
J. L.
,
Myska
,
J.
, and
Chara
,
Z.
, 1996, “
New Limiting Drag Reduction and Velocity Profile Asymptotes for Nonpolymeric Additives Systems
,”
AIChE J.
0001-1541,
42
(
12
), pp.
3544
3546
.
20.
Seban
,
R. A.
, and
McLaughlin
,
E. F.
, 1963, “
Heat Transfer in Tube Coils with Laminar and Turbulent Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
6
, pp.
387
395
.
21.
Janssen
,
L. A. M.
, and
Hoogendoorn
,
C. J.
, 1978, “
Laminar Convective Heat Transfer in Helical Coiled Tubes
,”
Int. J. Heat Mass Transfer
0017-9310,
21
, pp.
1197
1206
.
22.
Dravid
,
A. N.
,
Smith
,
K. A.
,
Merrill
, and
Brain
,
P. L. T.
, 1971, “
Effect of Secondary Flow Motion on Laminar Flow Heat Transfer in Helically Coiled Tubes
,”
AIChE J.
0001-1541,
17
, pp.
1114
1122
.
23.
Austen
,
D. S.
, and
Soliman
,
H. M.
, 1988, “
Laminar Flow and Heat Transfer in Helically Coiled Tubes with Substantial Pitch
,”
Exp. Therm. Fluid Sci.
0894-1777,
1
, pp.
183
194
.
24.
Acharya
,
N.
,
Sen
,
M.
, and
Chang
,
H.
, 1994, “
Thermal Entrance Length and Nusselt Numbers in Coiled Tubes
,”
Int. J. Heat Mass Transfer
0017-9310,
37
(
2
), pp.
336
340
.
25.
Lin
,
C. X.
, and
Ebadian
,
M. A.
, 1997, “
Developing Turbulent Convective Heat Transfer in Helical Pipes
,”
Int. J. Heat Mass Transfer
0017-9310,
40
(
16
), pp.
3861
3873
.
26.
Patankar
,
S. V.
,
Pratap
,
V. S.
, and
Spalding
,
D. B.
, 1974, “
Prediction of Laminar Flow and Heat Transfer in Helically Coiled Pipes
,”
J. Fluid Mech.
0022-1120,
62
(
3
), pp.
539
551
.
27.
Manlapaz
,
R. L.
, and
Churchill
,
S. W.
, 1981, “
Fully Developed Laminar Convection from a Helical Coil
,”
Chem. Eng. Commun.
0098-6445,
9
, pp.
185
200
.
28.
Mori
,
Y.
, and
Nakayama
,
W.
, 1967, “
Study on Forced Convective Heat Transfer in Curved Pipes (Second Report, Turbulent Region)
,”
Int. J. Heat Mass Transfer
0017-9310,
10
, pp.
37
59
.
29.
Sellin
,
R. H. J.
,
Hoyt
,
J. W.
, and
Scrivener
,
O.
, 1982, “
The Effect of Drag Reducing Additives on Fluid Flows and Their Industrial Applications: Basic Aspects
,”
J. Hydraul. Res.
0022-1686,
20
, pp.
29
68
.
30.
Aguilar
,
G.
,
Gasljevic
,
K.
, and
Matthys
,
E. F.
, 1999, “
Coupling Between Heat and Momentum Transfer Mechanisms for Drag-Reducing Polymer and Surfactant Solutions
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
796
802
.
31.
Gasljevic
,
K.
, and
Matthys
,
E. F.
, 1999, “
Improved Quantification of the Drag Reduction Phenomenon Through Turbulence Reduction Parameters
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
84
, pp.
123
130
.
32.
Kostic
,
M.
, 1994, “
On Turbulent Drag and Heat Transfer Phenomena Reduction and Laminar Heat Transfer Enhancement in Non-Circular Duct Flow of Certain non-Newtonian Fluids
,”
Int. J. Heat Mass Transfer
0017-9310,
37
(Suppl. 1), pp.
133
147
.
33.
Imao
,
S.
, 2003, “
Bend Loss Coefficient of Drag-Reducing Surfactant Solution
,”
Proc. ASME, Fourth ASME-JSME
Joint Fluid Engineering Conference
,
Honolulu, Hawaii
, July 6–10, Paper No. FEDSM2003–45767.
You do not currently have access to this content.