The effects of inclination 180degφ0deg on steady-state laminar natural convection of yield-stress fluids, modeled assuming a Bingham approach, have been numerically analyzed for nominal values of Rayleigh number Ra ranging from 103 to 105 in a square enclosure of infinite span lying horizontally at φ=0deg, then rotated about its axis for φ>0deg cases. It has been found that the mean Nusselt number Nu¯ increases with increasing values of Rayleigh number but Nu¯ values for yield-stress fluids are smaller than that obtained in the case of Newtonian fluids with the same nominal value of Rayleigh number Ra due to the weakening of convective transport. For large values of Bingham number Bn (i.e., nondimensional yield stress), the mean Nusselt number Nu¯ value settles to unity (Nu¯=1.0) as heat transfer takes place principally due to thermal conduction. The mean Nusselt number Nu¯ for both Newtonian and Bingham fluids decreases with increasing φ until reaching a local minimum at an angle φ* before rising with increasing φ until φ=90deg. For φ>90deg the mean Nusselt number Nu¯ decreases with increasing φ before assuming Nu¯=1.0 at φ=180deg for all values of Ra. The Bingham number above which Nu¯ becomes unity (denoted Bnmax) has been found to decrease with increasing φ until a local minimum is obtained at an angle φ* before rising with increasing φ until φ=90deg. However, Bnmax decreases monotonically with increasing φ for 90deg<φ<180deg. A correlation has been proposed in terms of φ, Ra, and Bn, which has been shown to satisfactorily capture Nu¯ obtained from simulation data for the range of Ra and φ considered here.

References

1.
Catton
,
I.
,
Ayyaswamy
,
P. S.
, and
Clever
,
R. M.
,
1974
, “
Natural Convection Flow in a Finite, Rectangular Slot Arbitrarily Oriented With Respect to the Gravity Vector
,”
Int. J. Heat Mass Transfer
,
17
(
2
), pp.
173
184
.10.1016/0017-9310(74)90079-9
2.
Arnold
,
J. N.
,
Catton
,
I.
, and
Edwards
,
D. K.
,
1976
, “
Experimental Investigation of Natural Convection in Inclined Rectangular Regions of Differing Aspect Ratios
,”
ASME J. Heat Transfer
,
98
(
1
), pp.
67
71
.10.1115/1.3450472
3.
Ozoe
,
H.
,
Sayama
,
H.
, and
Churchill
,
S.
,
1975
, “
Natural Convection in an Inclined Rectangular Channel at Various Aspect Ratios and Angles—Experimental Measurements
,”
Int. J. Heat Mass Transfer
,
18
(
12
), pp.
1425
1431
.10.1016/0017-9310(75)90256-2
4.
Ozoe
,
H.
,
Sayama
,
H.
, and
Churchill
,
S.
,
1974
, “
Natural Convection in an Inclined Square Channel
,”
Int. J. Heat Mass Transfer
,
17
(
3
), pp.
401
406
.10.1016/0017-9310(74)90011-8
5.
Soong
,
C. Y.
,
Tzeng
,
P. Y.
,
Chiang
,
D. C.
, and
Sheu
,
T. S.
,
1996
, “
Numerical Study on Mode-Transition of Natural Convection in Differentially Heated Inclined Enclosures
,”
Int. J. Heat Mass Transfer
,
39
(
14
), pp.
2869
2882
.10.1016/0017-9310(95)00378-9
6.
Wang
,
H.
, and
Hamed
,
M.
,
2006
, “
Flow Mode-Transition of Natural Convection in Inclined Rectangular Enclosures Subjected to Bidirectional Temperature Gradients
,”
Int. J. Therm. Sci.
,
45
(
8
), pp.
782
795
.10.1016/j.ijthermalsci.2005.07.008
7.
Khezzar
,
L.
,
Signiner
,
D.
, and
Vinogradov
,
I.
,
2012
, “
Natural Convection of Power Law Fluids in Inclined Cavities
,”
Int. J. Therm. Sci.
,
53
(3), pp.
8
17
.10.1016/j.ijthermalsci.2011.10.020
8.
Bodenschatz
,
E.
,
Pesch
,
W.
, and
Ahlers
,
G.
,
2000
, “
Recent Developments in Rayleigh–Bénard Convection
,”
Annu. Rev. Fluid Mech.
,
32
(
1
), pp.
709
778
.10.1146/annurev.fluid.32.1.709
9.
Vola
,
D.
,
Boscardin
,
L.
, and
Latché
,
J. C.
,
2003
, “
Laminar Unsteady Flows of Bingham Fluids: A Numerical Strategy and Some Benchmark Results
,”
J. Comput. Phys.
,
187
(
2
), pp.
441
456
.10.1016/S0021-9991(03)00118-9
10.
Turan
,
O.
,
Chakraborty
,
N.
, and
Poole
,
R. J.
,
2010
, “
Laminar Natural Convection of Bingham Fluids in a Square Enclosure With Differentially Heated Side Walls
,”
J. Non-Newtonian Fluid Mech.
,
165
(
15–16
), pp.
901
913
.10.1016/j.jnnfm.2010.04.013
11.
Vikhansky
,
A.
,
2010
, “
On the Onset of Natural Convection of Bingham Liquid in Rectangular Enclosures
,”
J. Non-Newtonian Fluid Mech.
,
165
(
23–24
), pp.
1713
1716
.10.1016/j.jnnfm.2010.09.003
12.
Turan
,
O.
,
Poole
,
R. J.
, and
Chakraborty
,
N.
,
2011
, “
Aspect Ratio Effects in Laminar Natural Convection of Bingham Fluids in Rectangular Enclosures With Differentially Heated Side Walls
,”
J. Non-Newtonian Fluid Mech.
,
166
(
3–4
), pp.
208
230
.10.1016/j.jnnfm.2010.12.002
13.
Turan
,
O.
,
Sachdeva
,
A.
,
Poole
,
R. J.
, and
Chakraborty
,
N.
,
2011
, “
Laminar Natural Convection of Bingham Fluids in a Square Enclosure With Vertical Walls Subjected to Constant Heat Flux
,”
Numer. Heat Transfer, Part A
,
60
(
5
), pp.
381
409
.10.1080/10407782.2011.594417
14.
Turan
,
O.
,
Poole
,
R. J.
, and
Chakraborty
,
N.
,
2014
, “
Influences of Boundary Conditions on Laminar Natural Convection of Bingham Fluids in Rectangular Enclosures With Differentially Heated Side Walls
,”
Heat Transfer Eng.
,
35
(
9
), pp.
822
849
.10.1080/01457632.2014.852870
15.
Balmforth
,
N. J.
, and
Rust
,
A. C.
,
2009
, “
Weakly Nonlinear Viscoplastic Convection
,”
J. Non-Newtonian Fluid Mech.
,
158
(
1–3
), pp.
36
45
.10.1016/j.jnnfm.2008.07.012
16.
Vikhansky
,
A.
,
2009
, “
Thermal Convection of a Viscoplastic Liquid With High Rayleigh and Bingham Numbers
,”
Phys. Fluids
,
21
(
10
), p.
103103
.10.1063/1.3256166
17.
Zhang
,
J.
,
Vola
,
D.
, and
Frigaard
,
I. A.
,
2006
, “
Yield Stress Effects on Rayleigh–Bénard Convection
,”
J. Fluid Mech.
,
566
(11), pp.
389
419
.10.1017/S002211200600200X
18.
Park
,
H. M.
, and
Ryu
,
D. H.
,
2001
, “
Rayleigh–Bénard Convection of Viscoelastic Fluids in Finite Domains
,”
J. Non-Newtonian Fluid Mech.
,
98
(
2–3
), pp.
169
184
.10.1016/S0377-0257(01)00104-5
19.
Turan
,
O.
,
Chakraborty
,
N.
, and
Poole
,
R. J.
,
2012
, “
Laminar Rayleigh–Bénard Convection of Yield Stress Fluids in a Square Enclosure
,”
J. Non-Newtonian Fluid Mech.
,
171–172
(
3
), pp.
83
96
.10.1016/j.jnnfm.2012.01.006
20.
Turan
,
O.
,
Poole
,
R. J.
, and
Chakraborty
,
N.
,
2012
, “
Boundary Condition Effects on Natural Convection of Bingham Fluids in a Square Enclosure With Differentially Heated Horizontal Walls
,”
J. Comput. Therm. Sci.
,
4
(
1
), pp.
77
97
.10.1615/ComputThermalScien.2012004759
21.
Hassan
,
M. A.
,
Pathak
,
M.
, and
Khan
,
M. K.
,
2013
, “
Natural Convection of Viscoplastic Fluids in a Square Enclosure
,”
ASME J. Heat Transfer
,
135
(
12
), p.
122501
.10.1115/1.4024896
22.
Darbouli
,
M.
,
Métivier
,
C.
,
Piau
,
J. M.
,
Magnin
,
A.
, and
Abdelali
,
A.
,
2013
, “
Rayleigh–Bénard Convection for Viscoplastic Fluids
,”
Phys. Fluids.
,
25
(
2
), p.
023101
.10.1063/1.4790521
23.
Kebiche
,
Z.
,
Castelain
,
C.
, and
Burghelea
,
T.
,
2014
, “
Experimental Investigation of the Rayleigh–Bénard Convection in a Yield Stress Fluid
,”
J. Non-Newtonian Fluid Mech.
,
203
, pp.
9
23
.10.1016/j.jnnfm.2013.10.005
24.
Barnes
,
H. A.
,
1999
, “
The Yield Stress—A Review or ‘πανταρɛι’—Everything Flows?
,”
J. Non Newtonian Fluid Mech.
,
81
(
1–2
), pp.
133
178
.10.1016/S0377-0257(98)00094-9
25.
O'Donovan
,
E. J.
, and
Tanner
,
R. I.
,
1984
, “
Numerical Study of the Bingham Squeeze Film Problem
,”
J. Non-Newtonian Fluid Mech.
,
15
(
1
), pp.
75
83
.10.1016/0377-0257(84)80029-4
26.
Gebhart
,
B.
,
1962
, “
Effects of Viscous Dissipation in Natural Convection
,”
J. Fluid Mech.
,
14
(
2
), pp.
225
232
.10.1017/S0022112062001196
27.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
Washington, DC
.
28.
de Vahl Davis
,
G.
,
1983
, “
Natural Convection of Air in a Square Cavity: A Bench Mark Numerical Solution
,”
Int. J. Numer. Methods Fluids
,
3
(
3
), pp.
249
264
.10.1002/fld.1650030305
29.
Mitsoulis
,
E.
, and
Zisis
,
T.
,
2001
, “
Flow of Bingham Plastics in a Lid-Driven Square Cavity
,”
J. Non-Newtonian Fluid Mech.
,
101
(
1–3
), pp.
173
180
.10.1016/S0377-0257(01)00147-1
30.
Bejan
,
A.
,
1984
,
Convection Heat Transfer
,
Wiley
,
New York
.10.1002/9781118671627
31.
Chang
,
B.-H.
,
2014
, “
Numerical Study of Flow and Heat Transfer in Differentially Heated Enclosures
,”
Therm. Sci.
,
18
(
2
), pp.
451
463
.10.2298/TSCI110626007C
You do not currently have access to this content.