A general formulation of the spherical harmonics (PN) methods was developed recently to expand the method to high orders of PN. The set of N(N + 1)/2 three-dimensional second-order elliptic PDEs formulation and their Marshak boundary conditions for arbitrary geometries are implemented in the openfoam finite volume based cfd software. The results are verified for four cases, including a 1D slab, a 2D square enclosure, a 3D cylindrical enclosure, and an axisymmetric flame. All cases have strongly varying radiative properties, and the results are compared with exact solutions and solutions from the photon Monte Carlo method (PMC).

References

1.
Chandrasekhar
,
S.
,
1960
,
Radiative Transfer
,
Dover
,
New York
.
2.
Lee
,
C. E.
,
1962
, “
The Discrete Sn Approximation to Transport Theory
,” Lawrence Livermore Laboratory, Technical Information Series Report No. LA2595.
3.
Chai
,
J. C.
,
Lee
,
H. S.
, and
Patankar
,
S. V.
,
1994
, “
Finite Volume Method for Radiation Heat Transfer
,”
J. Thermophys. Heat Transfer
,
8
(
3
), pp.
419
425
.10.2514/3.559
4.
Howell
,
J. R.
,
1968
, “
Application of Monte Carlo to Heat Transfer Problems
,”
Advances in Heat Transfer
, Vol.
5
,
J. P.
Hartnett
and
T. F.
Irvine
, eds.,
Academic
,
New York
.10.1016/S0065-2717(08)70128-X
5.
Jeans
,
J. H.
,
1917
, “
The Equations of Radiative Transfer of Energy
,”
Mon. Not. R. Astron. Soc.
,
78
(
1
), pp.
28
36
.10.1093/mnras/78.1.28
6.
Chai
,
J. C.
,
Lee
,
H. S.
, and
Patankar
,
S. V.
,
1993
, “
Ray Effect and False Scattering in the Discrete Ordinates Method
,”
Numer. Heat Transfer, Part B
,
24
(
4
), pp.
373
389
.10.1080/10407799308955899
7.
Modest
,
M. F.
,
2013
,
Radiative Heat Transfer
, 3rd ed.,
Academic
,
New York
.
8.
Modest
,
M. F.
, and
Yang
,
J.
,
2008
, “
Elliptic PDE Formulation and Boundary Conditions of the Spherical Harmonics Method of Arbitrary Order for General Three-Dimensional Geometries
,”
J. Quant. Spectrosc. Radiat. Transfer
,
109
(
9
), pp.
1641
1666
.10.1016/j.jqsrt.2007.12.018
9.
Yang
,
J.
, and
Modest
,
M. F.
,
2007
, “
High-Order P-N Approximation for Radiative Transfer in Arbitrary Geometries
,”
J. Quant. Spectrosc. Radiat. Transfer
,
104
(
2
), pp.
217
227
.10.1016/j.jqsrt.2006.07.017
10.
Modest
,
M. F.
,
2012
, “
Further Developments of the Elliptic PN-Approximation Formulation and Its Marshak Boundary Conditions
,”
Numer. Heat Transfer, Part B
,
62
(
2–3
), pp.
181
202
.10.1080/10407790.2012.702645
11.
Jasak
,
H.
,
Jemcov
,
A.
, and
Tukovic
,
Z.
,
2007
, “
OpenFOAM: A C++ Library for Complex Physics Simulations
,” International Workshop on Coupled Methods in Numerical Dynamics, IUC, pp.
1
20
.
12.
Marquez
,
R.
, and
Modest
,
M. F.
,
2013
, “
Implementation of the PN-Approximation for Radiative Heat Transfer on OpenFOAM
,”
ASME
Paper No. HT2013-17556.10.1115/HT2013-17556
13.
Marshak
,
R. E.
,
1947
, “
Note on the Spherical Harmonics Method as Applied to the Milne Problem for a Sphere
,”
Phys. Rev.
,
71
(
7
), pp.
443
446
.10.1103/PhysRev.71.443
14.
Varshalovich
,
D. A.
,
Moskalev
,
A. N.
, and
Khersonskii
,
V. K.
,
1981
,
Quantum Theory of Angular Momentum
,
World Scientific
,
Singapore
.
15.
Ravishankar
,
M.
,
Mazumder
,
S.
, and
Kumar
,
A.
,
2010
, “
Finite-Volume Formulation and Solution of the P3 Equations of Radiative Transfer on Unstructured Meshes
,”
ASME J. Heat Transfer
,
132
(
2
), p.
023402
.10.1115/1.4000184
16.
Nocedal
,
J.
, and
Wright
,
S. J.
,
2006
,
Numerical Optimization
, 2nd ed.,
Springer
,
Berlin
.
17.
Press
,
W. H.
,
2007
,
Numerical Recipes: The Art of Scientific Computing
, 3rd ed.,
Cambridge University
,
Cambridge, UK
.
18.
Barlow
,
R. S.
, “
International Workshop on Measurement and Computation of Turbulent Nonpremixed Flames (TNF)
,” http://www.sandia.gov/TNF/abstract.html
19.
Modest
,
M. F.
,
2003
, “
Narrow-Band and Full-Spectrum k-Distributions for Radiative Heat Transfer—Correlated-k vs. Scaling Approximation
,”
J. Quant. Spectrosc. Radiat. Transfer
,
76
(
1
), pp.
69
83
.10.1016/S0022-4073(02)00046-8
20.
Modest
,
M. F.
, and
Riazzi
,
R. J.
,
2005
, “
Assembly of Full-Spectrum k-Distributions From a Narrow-Band Database; Effects of Mixing Gases, Gases and Nongray Absorbing Particles, and Mixtures With Nongray Scatterers in Nongray Enclosures
,”
J. Quant. Spectrosc. Radiat. Transfer
,
90
(
2
), pp.
169
189
.10.1016/j.jqsrt.2004.03.007
21.
Wang
,
A.
, and
Modest
,
M. F.
,
2007
, “
Spectral Monte Carlo Models for Nongray Radiation Analyses in Inhomogeneous Participating Media
,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp.
3877
3889
.10.1016/j.ijheatmasstransfer.2007.02.018
22.
Ferziger
,
J. H.
, and
Perić
,
M.
,
2001
,
Computational Methods for Fluid Dynamics
, 3rd ed.,
Springer
,
Berlin
.
You do not currently have access to this content.