A high velocity jet fire can cause catastrophic failure due to flame impingement or radiation. The scenario becomes more complicated when multiple jet fires exist following ignition of release from pressure relief valves (PRV) as the thermal effect not only distorts the individual jet flame but also changes the flame height and temperature profile and such kind of high velocity jet flames have not been studied in the past. Therefore, prediction of the flame shape including the merging and interaction of multiple jet fires is essential in risk analysis. In this paper, fire interaction of two high velocity (>10 m/s) jet fires is investigated using computational fluid dynamics (CFD) techniques. Different radiation models are analyzed and validated by experimental data from the literature. Based on the simulation result, the merging of high velocity jet fires is divided into three stages. An empirical equation considering the fire interaction for the average flame height with different release velocities and separation distance is developed. The flame height increases dramatically when the separation distance decreases resulting in a shortage of oxygen. So, part of the methane is reacted in a higher height, which explains the change in the merging flame height and temperature.

References

1.
Gómez-Mares
,
M.
,
Munoz
,
M.
, and
Casal
,
J.
,
2009
, “
Axial Temperature Distribution in Vertical Jet Fires
,”
J. Hazard. Mater.
,
172
(
1
), pp.
54
60
.
2.
Palacios
,
A.
,
Muñoz
,
M.
, and
Darbra
,
R.
,
2012
, “
Thermal Radiation From Vertical Jet Fires
,”
Fire Saf. J.
,
51
, pp.
93
101
.
3.
API,
2014
, “
Pressure-Relieving and Depressuring Systems
,”
American Petroleum Institute,
Washington, DC, Standard No.
API 521
.http://www.fakels.ru/wp-content/uploads/2017/08/api_std_521_2014_6th_edition_pressure_relieving_and_depressu.pdf
4.
API,
1998
, “
Venting Atmospheric and Low-Pressure Storage Tanks
,”
American Petroleum Institute,
Washington, DC, Standard No.
2000
.https://law.resource.org/pub/us/cfr/ibr/002/api.2000.1998.pdf
5.
Woodward
,
J. L.
, and
Pitbaldo
,
R.
,
2010
,
LNG Risk Based Safety: Modeling and Consequence Analysis
,
Wiley
,
Hoboken, NJ
, pp.
275
317
.
6.
BS,
2007
, “
Installation and Equipment for Liquefied Natural Gas—Design of Onshore Installations
,”
British Standard
, Standard No.
BS EN 1473:2007
.http://www.golng.eu/files/upload/10.1.1.470.7021.pdf
7.
Chang
,
J. I.
, and
Lin
,
C.
,
2006
, “
A Study of Storage Tank Accidents
,”
J. Loss Prev. Process Ind.
,
19
(
1
), pp.
51
59
.
8.
Quintiere
,
J.
, and
Grove
,
B.
,
1998
, “
A Unified Analysis for Fire Plumes
,”
Symp. (Int.) Combust.
,
27
(
2
), pp.
2757
2766
.
9.
Sugawa
,
O.
, and
Takahashi
,
W.
,
1993
, “
Flame Height Behavior From Multi‐Fire Sources
,”
Fire Mater.
,
17
(
3
), pp.
111
117
.
10.
Weng
,
W.
,
Kamikawa
,
D.
, and
Fukuda
,
Y.
,
2004
, “
Study on Flame Height of Merged Flame From Multiple Fire Sources
,”
Combust. Sci. Technol.
,
176
(
12
), pp.
2105
2123
.
11.
Kamikawa
,
D.
,
Weng
,
W.
, and
Kagiya
,
K.
,
2005
, “
Experimental Study of Merged Flames From Multifire Sources in Propane and Wood Crib Burners
,”
Combust. Flame
,
142
(
1–2
), pp.
17
23
.
12.
Liu
,
N.
,
Liu
,
Q.
, and
Lozano
,
J. S.
,
2013
, “
Multiple Fire Interactions: A Further Investigation by Burning Rate Data of Square Fire Arrays
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
2555
2564
.
13.
Consalvi
,
J.
, and
Demarco
,
R.
,
2012
, “
Modelling Thermal Radiation From One-Meter Diameter Methane Pool Fires
,”
J. Phys.: Conf. Ser.
,
369
, p.
012012
.
14.
Drysdale
,
D.
,
2011
,
An Introduction to Fire Dynamics
,
Wiley
,
Hoboken, NJ
.
15.
Zheng
,
B.
, and
Chen
,
G.
,
2011
, “
Storage Tank Fire Accidents
,”
Process Saf. Prog.
,
30
(
3
), pp.
291
293
.
16.
Gupta
,
S.
, and
Chan
,
S.
,
2016
, “
A CFD Based Explosion Risk Analysis Methodology Using Time Varying Release Rates in Dispersion Simulations
,”
J. Loss Prev. Process Ind.
,
39
, pp.
59
67
.
17.
Ponniah
,
A.
,
Sourirajan
,
V.
, and
Fung
,
J.
,
2016
, “
Emergency Shutdown Valve for Pump and Compressor Isolation: A Review of the Basis
,”
Chem. Eng. Trans.
,
48
, pp.
667
672
.
18.
Jahn
,
W.
,
Rein
,
G.
, and
Torero
,
J. L.
,
2008
, “
The Effect of Model Parameters on the Simulation of Fire Dynamics
,”
Fire Saf. Sci.
,
9
, pp.
1341
1352
.
19.
Zhou
,
K.
, and
Jiang
,
J.
,
2016
, “
Thermal Radiation From Vertical Turbulent Jet Flame: Line Source Model
,”
ASME J. Heat Transfer
,
138
(
4
), p.
042701
.
20.
Hawthorne
,
W.
,
Weddell
,
D.
, and
Hottel
,
H.
,
1948
, “
Mixing and Combustion in Turbulent Gas Jets
,”
Symp. Combust. Flame, Explos. Phenom.
,
3
(
1
), pp.
266
288
.
21.
Ricou
,
F. P.
, and
Spalding
,
D.
,
1961
, “
Measurements of Entrainment by Axisymmetrical Turbulent Jets
,”
J. Fluid Mech.
,
11
(
1
), pp.
21
32
.
22.
Zukoski
,
E. E.
,
Kubota
,
T.
, and
Cetegen
,
B.
,
1981
, “
Entrainment in Fire Plumes
,”
Fire Saf. J.
,
3
(
3
), pp.
107
121
.
23.
Heskestad
,
G.
,
1983
, “
Luminous Heights of Turbulent Diffusion Flames
,”
Fire Saf. J.
,
5
(
2
), pp.
103
108
.
24.
Cox
,
G.
, and
Chitty
,
R.
,
1985
, “
Some Source-Dependent Effects of Unbounded Fires
,”
Combust. Flame
,
60
(
3
), pp.
219
232
.
25.
Zukoski
,
E. E.
,
1995
, “
Properties of Fire Plumes
,”
Combustion Fundamentals of Fire
,
G.
Cox
, ed.,
Academic Press
,
London
, pp.
101
219
.
26.
Bagster
,
D. F.
, and
Schubach
,
S. A.
,
1996
, “
The Prediction of Jet-Fire Dimensions
,”
J. Loss Prev. Process Ind.
,
9
(
3
), pp.
241
245
.
27.
Yuan
,
L.
, and
Cox
,
G.
,
1996
, “
An Experimental Study of Some Line Fires
,”
Fire Saf. J.
,
27
(
2
), pp.
123
139
.
28.
Lowesmith
,
B. J.
,
Hankinson
,
G.
, and
Acton
,
M.
,
2007
, “
An Overview of the Nature of Hydrocarbon Jet Fire Hazards in the Oil and Gas Industry and a Simplified Approach to Assessing the Hazards
,”
Process Saf. Environ. Prot.
,
85
(
3
), pp.
207
220
.
29.
Bradley
,
D.
,
Casal
,
J.
, and
Gaskell
,
P.
,
2013
, “
Jet Flames, Flares and Pool Fires: Predictions of Flame Lift-Off, Plume and Flame Height Under Choked and Unchoked Conditions
,”
Seventh International Seminar on Fire and Explosion Hazards, Providence, RI, May 5–10
, pp.
200
209
.
30.
Bradley
,
D.
,
Gaskell
,
P. H.
, and
Gu
,
X.
,
2016
, “
Jet Flame Heights, Lift-Off Distances, and Mean Flame Surface Density for Extensive Ranges of Fuels and Flow Rates
,”
Combust. Flame
,
164
, pp.
400
409
.
31.
Cho
,
E.
,
Danon
,
B.
, and
De Jong
,
W.
,
2011
, “
Behavior of a 300 kWth Regenerative Multi-Burner Flameless Oxidation Furnace
,”
Appl. Energy
,
88
(
12
), pp.
4952
4959
.
32.
Ma
,
T.
, and
Quintiere
,
J.
,
2003
, “
Numerical Simulation of Axi-Symmetric Fire Plumes: Accuracy and Limitations
,”
Fire Saf. J.
,
38
(
5
), pp.
467
492
.
33.
Sun
,
X.
,
Hu
,
L.
, and
Chow
,
W.
,
2011
, “
A Theoretical Model to Predict Plume Rise in Shaft Generated by Growing Compartment Fire
,”
Int. J. Heat Mass Transfer
,
54
(
4
), pp.
910
920
.
34.
Jahn
,
W.
,
Gonzalez
,
O.
, and
de Dios Rivera
,
J.
,
2015
, “
Using Computational Fluid Dynamics in the Forensic Analysis of a Prison Fire
,”
Forensic Sci. Int.
,
253
, pp.
e33
e42
.
35.
Yuen
,
A.
,
Yeoh
,
G.
, and
Yuen
,
R.
,
2016
, “
Numerical Study on Small-Scale Fire Whirl Using Large Eddy Simulation
,” Third
International Conference on Fluid Flow, Heat and Mass Transfer
, Ottawa, ON, Canada, May 2–3, pp.
165-1
165-8
.https://avestia.com/FFHMT2016_Proceedings/files/paper/165.pdf
36.
Mell
,
W. E.
,
Manzello
,
S. L.
, and
Maranghides
,
A.
,
2006
, “
Numerical Modeling of Fire Spread Through Trees and Shrubs
,”
Ecol. Manage.
,
234
(
1
), p.
S82
.
37.
Vidmar
,
P.
, and
Petelin
,
S.
,
2006
, “
Analysis of the Effect of an External Fire on the Safety Operation of a Power Plant
,”
Fire Saf. J.
,
41
(
6
), pp.
486
490
.
38.
Rusch
,
D.
,
Blum
,
L.
, and
Moser
,
A.
,
2008
, “
Turbulence Model Validation for Fire Simulation by CFD and Experimental Investigation of a Hot Jet in Crossflow
,”
Fire Saf. J.
,
43
(
6
), pp.
429
441
.
39.
Brennan
,
S.
,
Makarov
,
D.
, and
Molkov
,
V.
,
2009
, “
LES of High Pressure Hydrogen Jet Fire
,”
J. Loss Prev. Process Ind.
,
22
(
3
), pp.
353
359
.
40.
Pope
,
S. B.
,
2000
, “
Turbulent Flows
,”
Cambridge University Press
,
New York
.
41.
Zukoski
,
E.
,
Cetegen
,
B.
, and
Kubota
,
T.
,
1985
, “
Visible Structure of Buoyant Diffusion Flames
,”
Symp. (Int.) Combust.
,
20
(
1
), pp.
361
366
.
42.
Heskestad
,
G.
,
1998
, “
Dynamics of the Fire Plume
,”
Philos. Trans. R. Soc. London Ser. A: Math., Phys. Eng. Sci.
,
356
(
1748
), pp.
2815
2834
.
43.
Baldwin
,
R.
,
1968
, “
Flame Merging in Multiple Fires
,”
Combust. Flame
,
12
(
4
), pp.
318
324
.
44.
Liu
,
N.
,
Liu
,
Q.
, and
Deng
,
Z.
,
2007
, “
Burn-out Time Data Analysis on Interaction Effects Among Multiple Fires in Fire Arrays
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
2589
2597
.
45.
Becker
,
H.
, and
Yamazaki
,
S.
,
1978
, “
Entrainment, Momentum Flux and Temperature in Vertical Free Turbulent Diffusion Flames
,”
Combust. Flame
,
33
, pp.
123
149
.
46.
Ho
,
T. C.
,
Fu
,
S. C.
, and
Chao
,
C. Y.
,
2016
, “
Investigation of Flame Height From Multiple Liquefied Natural Gas Fire
,”
ASME
Paper No. POWER2016-59567.
47.
Baillie
,
S.
,
Caulfield
,
M.
, and
Cook
,
D.
,
1998
, “
A Phenomenological Model for Predicting the Thermal Loading to a Cylindrical Vessel Impacted by High Pressure Natural Gas Jet Fires
,”
Process Saf. Environ. Prot.
,
76
(
1
), pp.
3
13
.
48.
Beyler
,
C. L.
,
2016
, “
Fire Hazard Calculations for Large, Open Hydrocarbon Fires
,”
SFPE Handbook of Fire Protection Engineering
,
M. J.
Hurley
,
D. T.
Gottuk
, and
J. R.
Hall, Jr.
, eds.,
Springer
, New York, pp.
2591
2663
.
49.
Cai
,
J.
,
Marquez
,
R.
, and
Modest
,
M. F.
,
2014
, “
Comparisons of Radiative Heat Transfer Calculations in a Jet Diffusion Flame Using Spherical Harmonics and k-Distributions
,”
ASME J. Heat Transfer
,
136
(
11
), p.
112702
.
50.
McCaffrey
,
B.
,
1989
, “
Momentum Diffusion Flame Characteristics and the Effects of Water Spray
,”
Combust. Sci. Technol.
,
63
(
4–6
), pp.
315
335
.
You do not currently have access to this content.