This paper discusses about the numerical prediction of forced convection heat transfer through high-porosity metal foams with discrete heat sources in a vertical channel. The physical geometry consists of a discrete heat source assembly placed at the center of the channel along with high thermal conductivity porous metal foams in order to enhance the heat transfer. The novelty of the present work is the use of combination of local thermal equilibrium (LTE) model and local thermal nonequilibrium (LTNE) model for the metal foam region to investigate the temperature distribution of the heat sources and to obtain an optimal heat distribution so as to achieve isothermal condition. Aluminum and copper metal foams of 10 PPI having a thickness of 20 mm are considered for the numerical simulations. The metal foam region is considered as homogeneous porous media and numerically modeled using Darcy Extended Forchheimer model. The proposed methodology is validated using the experimental results available in literature. The results of the present numerical solution indicate that the excess temperature of the bottom heat source reduces by 100 °C with the use of aluminum metal foam. The overall temperature of the vertical channel reduces based on the combination of LTE and LTNE models compared to only LTNE model. The results of excess temperature for both the empty and the metal foam filled vertical channels are presented in this work.

References

1.
Gururaja Rao
,
C.
,
Balaji
,
C.
, and
Venkateshan
,
S. P.
,
2002
, “
Effect of Surface Radiation on Conjugate Mixed Convection in a Vertical Channel With a Discrete Heat Source in Each Wall
,”
Int. J. Heat Mass Transfer
,
45
(16), pp.
3331
3347
.
2.
Baskaya
,
S.
,
Erturhan
,
U.
, and
Sivrioglu
,
M.
,
2005
, “
An Experimental Study on Convection Heat Transfer From an Array of Discrete Heat Sources
,”
Int. Commun. Heat Mass Transfer
,
32
(1–2), pp.
248
257
.
3.
Dogan
,
A.
,
Sivrioglu
,
M.
, and
Baskaya
,
S.
,
2005
, “
Experimental Investigation of Mixed Convection Heat Transfer in a Rectangular Channel With Discrete Heat Sources at the Top and at the Bottom
,”
Int. Commun. Heat Mass Transfer
,
32
(9), pp.
1244
1252
.
4.
Bautista
,
O.
, and
Mendez
,
F.
,
2006
, “
Internal Heat Generation in a Discrete Heat Source: Conjugate Heat Transfer Analysis
,”
Appl. Therm. Eng.
,
26
(17–18), pp.
2201
2208
.
5.
Linhui
,
C.
,
Huaizhang
,
T.
,
Yanzhong
,
L.
, and
Dongbin
,
Z.
,
2006
, “
Experimental Study on Natural Convective Heat Transfer From a Vertical Plate With Discrete Heat Sources Mounted on the Back
,”
Energy Convers. Manage.
,
47
(18–19), pp.
3447
3455
.
6.
Sudhakar
,
T. V. V.
,
Balaji
,
C.
, and
Venkateshan
,
S. P.
,
2009
, “
Optimal Configuration of Discrete Heat Sources in a Vertical Duct Under Conjugate Mixed Convection Using Artificial Neural Networks
,”
Int. J. Therm. Sci.
,
48
(5), pp.
881
890
.
7.
Radhakrishnan
,
T. V.
,
Balaji
,
C.
, and
Venkateshan
,
S. P.
,
2010
, “
Optimization of Multiple Heaters in a Vented Enclosure—A Combined Numerical and Experimental Study
,”
Int. J. Therm. Sci.
,
49
(4), pp.
721
732
.
8.
Hotta
,
T. K.
,
Muvvala
,
P.
, and
Venkateshan
,
S. P.
,
2013
, “
Effect of Surface Radiation Heat Transfer on the Optimal Distribution of Discrete Heat Sources Under Natural Convection
,”
Heat Mass Transfer
,
49
(2), pp.
207
217
.
9.
Ajmera
,
S. K.
, and
Mathur
,
A. N.
,
2015
, “
Experimental Investigation of Mixed Convection in Multiple Ventilated Enclosures With Discrete Heat Sources
,”
Exp. Therm. Fluid Sci.
,
68
, pp.
402
411
.
10.
Durgam
,
S.
,
Venkateshan
,
S. P.
, and
Sundararajan
,
T.
,
2017
, “
Experimental and Numerical Investigations on Optimal Distribution of Heat Source Array Under Natural and Forced Convection in a Horizontal Channel
,”
Int. J. Therm. Sci.
,
115
, pp.
125
138
.
11.
Da Silva
,
A. K.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2004
, “
Optimal Distribution of Discrete Heat Sources on a Plate With Laminar Forced Convection
,”
Int. J. Heat Mass Transfer
,
47
(10–11), pp.
2139
2148
.
12.
Kamath
,
P. M.
,
Balaji
,
C.
, and
Venkateshan
,
S. P.
,
2014
, “
Heat Transfer Enhancement With Discrete Sources in a Metal Foam Filled Vertical Channel
,”
Int. Commun. Heat Mass Transfer
,
53
, pp.
180
184
.
13.
Chen
,
C. C.
,
Huang
,
P. C.
, and
Hwang
,
H. Y.
,
2013
, “
Enhanced Forced Convective Cooling of Heat Sources by Metal Foam Porous Layers
,”
Int. J. Heat Mass Transfer
,
58
(1–2), pp.
356
373
.
14.
Hadim
,
A.
, and
Chen
,
G.
,
1994
, “
Non-Darcy Mixed Convection in a Vertical Porous Channel With Discrete Heat Sources at the Walls
,”
Int. Commun. Heat Mass Transfer
,
21
(
3
), pp.
377
387
.
15.
Hadim
,
H. A.
, and
Bethancourt
,
A.
,
1995
, “
Numerical Study of Forced Convection in a Partially Porous Channel With Discrete Heat Sources
,”
ASME J. Electron. Packag.
,
117
(1), pp.
46
51
.
16.
Angirasa
,
D.
, and
Peterson
,
G. P.
,
1999
, “
Forced Convection Heat Transfer Augmentation in a Channel With a Localized Heat Source Using Fibrous Materials
,”
ASME J. Electron. Packag.
,
121
(1), pp.
1
7
.
17.
Huang
,
P. C.
,
Yang
,
C. F.
,
Hwang
,
J. J.
, and
Chiu
,
M. T.
,
2005
, “
Enhancement of Forced Convection Cooling of Multiple Heated Blocks in a Channel Using Porous Covers
,”
Int. J. Heat Mass Transfer
,
48
(3–4), pp.
647
664
.
18.
Yucel
,
N.
, and
Guven
,
R. T.
,
2009
, “
Numerical Study of Heat Transfer in a Rectangular Channel With Porous Covering Obstacles
,”
Transp. Porous Medium
,
77
(1), pp.
41
58
.
19.
Sivasankaran
,
S.
,
Do
,
Y.
, and
Sankar
,
M.
,
2011
, “
Effect of Discrete Heating on Natural Convection in a Rectangular Porous Enclosure
,”
Transp. Porous Medium
,
86
(1), pp.
261
281
.
20.
Huang
,
P. C.
, and
Chen
,
C. C.
,
2012
, “
Simulation of Mixed Convection in a Vertical Channel Containing Discrete Porous-Covering Heat Blocks
,”
Int. J. Heat Mass Transfer
,
55
(11–12), pp.
3147
3159
.
21.
Sankar
,
M.
,
Park
,
J.
,
Kim
,
D.
, and
Do
,
Y.
,
2013
, “
Numerical Study of Natural Convection in a Vertical Porous Annulus With an Internal Heat Source: Effect of Discrete Heating
,”
Numer. Heat Transfer, Part A
,
63
(
9
), pp.
687
712
.
22.
Ghorab
,
M. G.
,
2015
, “
Forced Convection Analysis of Discrete Heated Porous Convergent Channel
,”
Heat Transfer Eng.
,
36
(
9
), pp.
829
846
.
23.
Kamath
,
P. M.
,
Balaji
,
C.
, and
Venkateshan
,
S. P.
,
2013
, “
Convection Heat Transfer From Aluminum and Copper Foams in a Vertical Channel—An Experimental Study
,”
Int. J. Therm. Sci.
,
64
, pp.
1
10
.
24.
Xu
,
H. J.
,
Qu
,
Z. G.
,
Lu
,
T. J.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2011
, “
Thermal Modeling of Forced Convection in a Parallel-Plate Channel Partially Filled With Metallic Foams
,”
ASME J. Heat Transfer
,
133
(9), p.
092603
.
25.
Ghosh
,
I.
,
2008
, “
Heat-Transfer Analysis of High Porosity Open-Cell Metal Foam
,”
ASME J. Heat Transfer
,
130
(
3
), p.
034501
.
26.
Solmus
,
I.
,
2015
, “
Numerical Investigation of Heat Transfer and Fluid Flow Behaviors of a Block Type Graphite Foam Heat Sink Inserted in a Rectangular Channel
,”
Appl. Therm. Eng.
,
78
, pp.
605
615
.
27.
ANSYS
, 2017, “
ANSYS® [ANSYS Fluent], 15.0, Help System, User's Guide/Theory Guide
,”
ANSYS
, Canonsburg, PA, accessed Nov. 21, 2018, http://www.ansys.com/Products/Fluids/ANSYS-Fluent
28.
Nield
,
D. A.
, and
Bejan
,
A.
,
2005
,
Convection in Porous Media
, 3rd ed.,
Springer
,
Berlin
.
29.
Calmidi
,
V.
, and
Mahajan
,
R.
,
2000
, “
Forced Convection in High Porosity Metal Foams
,”
ASME J. Heat Transfer.
,
122
(
3
), pp.
557
565
.
30.
Zukauskas
,
A. A.
,
1987
, “
Convective Heat Transfer in Cross-Flow
,”
Handbook of Single-Phase Convective Heat Transfer
,
S.
Kakac
,
R. K.
Shah
, and
W.
Aung
, eds.,
Wiley
,
New York
.
31.
Kamath
,
P. M.
,
Balaji
,
C.
, and
Venkateshan
,
S. P.
,
2011
, “
Experimental Investigation of Flow Assisted Mixed Convection in High Porosity Foams in Vertical Channels
,”
Int. J. Heat Mass Transfer
,
54
(
25–26
), pp.
5231
5241
.
32.
Lin
,
W.
,
Xie
,
G.
,
Yuan
,
J.
, and
Sundén
,
B.
,
2016
, “
Comparison and Analysis of Heat Transfer in Aluminum Foam Using Local Thermal Equilibrium or Non-Equilibrium Model
,”
Heat Transfer Eng.
,
37
(
3–4
), pp.
314
322
.
You do not currently have access to this content.