Despite the abundant theoretical studies of magnetic polaritons (MPs) in tailoring the radiative properties of nanostructures, experimental investigation of MPs in deep metal gratings is still lacking. This work experimentally demonstrates the excitation of MP from several microfabricated aluminum gratings in the mid-infrared region by measuring the specular reflectance (zeroth-order diffraction) of the specimen using a Fourier-transform infrared (FTIR) spectrometer. The rigorous coupled-wave analysis (RCWA) and an LC-circuit model are employed to elucidate the mechanism of various resonant modes and their coupling effect. The influence of incidence angle, plane of incidence, polarization, and the trench depth on the spectral reflectance is also discussed. Moreover, the MP dispersion for off-plane layout has been investigated and demonstrated for the first time. The insight gained from this work may facilitate future design and applications of subwavelength periodic structures with desired radiative properties.

References

1.
Pendry
,
J. B.
,
Holden
,
A. J.
,
Robbins
,
D. J.
, and
Stewart
,
W. J.
,
1999
, “
Magnetism From Conductors and Enhanced Nonlinear Phenomena
,”
IEEE Trans. Microwave Theory Tech.
,
47
(
11
), pp.
2075
2084
.
2.
Shelby
,
R. A.
,
Smith
,
D. R.
, and
Schultz
,
S.
,
2001
, “
Experimental Verification of a Negative Index of Refraction
,”
Science
,
292
(
5514
), pp.
77
79
.
3.
Yen
,
T. J.
,
Padilla
,
W. J.
,
Fang
,
N.
,
Vier
,
D. C.
,
Smith
,
D. R.
,
Pendry
,
J. B.
,
Basov
,
D. N.
, and
Zhang
,
X.
,
2004
, “
Terahertz Magnetic Response From Artificial Materials
,”
Science
,
303
(
5663
), pp.
1494
1496
.
4.
Linden
,
S.
,
Enkrich
,
C.
,
Wegener
,
M.
,
Zhou
,
J.
,
Koschny
,
T.
, and
Soukoulis
,
C. M.
,
2004
, “
Magnetic Response of Metamaterials at 100 Terahertz
,”
Science
,
306
(
5700
), pp.
1351
1353
.
5.
Liu
,
H.
,
Li
,
T.
,
Wang
,
Q. J.
,
Zhu
,
Z. H.
,
Wang
,
S. M.
,
Li
,
J. Q.
,
Zhu
,
S. N.
,
Zhu
,
Y. Y.
, and
Zhang
,
X.
,
2009
, “
Extraordinary Optical Transmission Induced by Excitation of a Magnetic Plasmon Propagation Mode in a Diatomic Chain of Slit-Hole Resonators
,”
Phys. Rev. B
,
79
(
2
), p.
024304
.
6.
Liu
,
X. L.
,
Zhao
,
B.
, and
Zhang
,
Z. M.
,
2015
, “
Blocking-Assisted Infrared Transmission of Subwavelength Metallic Gratings by Graphene
,”
J. Opt.
,
17
(
3
), p.
035004
.
7.
Schurig
,
D.
,
Mock
,
J. J.
,
Justice
,
B. J.
,
Cummer
,
S. A.
,
Pendry
,
J. B.
,
Starr
,
A. F.
, and
Smith
,
D. R.
,
2006
, “
Metamaterial Electromagnetic Cloak at Microwave Frequencies
,”
Science
,
314
(
5801
), pp.
977
980
.
8.
Mattiucci
,
N.
,
D'Aguanno
,
G.
,
Alù
,
A.
,
Argyropoulos
,
C.
,
Foreman
,
J. V.
, and
Bloemer
,
M. J.
,
2012
, “
Taming the Thermal Emissivity of Metals: A Metamaterial Approach
,”
Appl. Phys. Lett.
,
100
(
20
), p.
201109
.
9.
Lee
,
B. J.
,
Wang
,
L. P.
, and
Zhang
,
Z. M.
,
2008
, “
Coherent Thermal Emission by Excitation of Magnetic Polaritons Between Periodic Strips and a Metallic Film
,”
Opt. Express
,
16
(
15
), pp.
11328
11336
.
10.
Zhao
,
B.
, and
Zhang
,
Z. M.
,
2015
, “
Strong Plasmonic Coupling Between Graphene Ribbon Array and Metal Gratings
,”
ACS Photonics
,
2
(
11
), pp.
1611
1618
.
11.
Wang
,
L. P.
, and
Zhang
,
Z. M.
,
2012
, “
Wavelength-Selective and Diffuse Emitter Enhanced by Magnetic Polaritons for Thermophotovoltaics
,”
Appl. Phys. Lett.
,
100
(
6
), p.
063902
.
12.
Wang
,
L. P.
, and
Zhang
,
Z. M.
,
2013
, “
Measurement of Coherent Thermal Emission Due to Magnetic Polaritons in Subwavelength Microstructures
,”
ASME J. Heat Transfer
,
135
(
9
), p.
091505
.
13.
Zhao
,
B.
, and
Zhang
,
Z. M.
,
2014
, “
Study of Magnetic Polaritons in Deep Gratings for Thermal Emission Control
,”
J. Quant. Spectrosc. Radiat. Transfer
,
135
, pp.
81
89
.
14.
Hesketh
,
P. J.
,
Zemel
,
J. N.
, and
Gebhart
,
B.
,
1986
, “
Organ Pipe Radiant Modes of Periodic Micromachined Silicon Surfaces
,”
Nature
,
324
(
6097
), pp.
549
551
.
15.
Maruyama
,
S.
,
Kashiwa
,
T.
,
Yugami
,
H.
, and
Esashi
,
M.
,
2001
, “
Thermal Radiation From Two-Dimensionally Confined Modes in Microcavities
,”
Appl. Phys. Lett.
,
79
(
9
), pp.
1393
1395
.
16.
Kusunoki
,
F.
,
Kohama
,
T.
,
Hiroshima
,
T.
,
Fukumoto
,
S.
,
Takahara
,
J.
, and
Kobayashi
,
T.
,
2004
, “
Narrow-Band Thermal Radiation With Low Directivity by Resonant Modes Inside Tungsten Microcavities
,”
Jpn. J. Appl. Phys.
,
43
(
8A
), pp.
5253
5258
.
17.
Huang
,
J.
,
Xuan
,
Y.
, and
Li
,
Q.
,
2011
, “
Narrow-Band Spectral Features of Structured Silver Surface With Rectangular Resonant Cavities
,”
J. Quant. Spectrosc. Radiat. Transfer
,
112
(
5
), pp.
839
846
.
18.
Fan
,
R. H.
,
Peng
,
R. W.
,
Huang
,
X. R.
,
Li
,
J.
,
Liu
,
Y.
,
Hu
,
Q.
,
Wang
,
M.
, and
Zhang
,
X.
,
2012
, “
Transparent Metals for Ultrabroadband Electromagnetic Waves
,”
Adv. Mater.
,
24
(
15
), pp.
1980
1986
.
19.
Wang
,
L. P.
, and
Zhang
,
Z. M.
,
2009
, “
Resonance Rransmission or Absorption in Deep Gratings Explained by Magnetic Polaritons
,”
Appl. Phys. Lett.
,
95
(
11
), p.
111904
.
20.
Zhao
,
B.
,
Zhao
,
J. M.
, and
Zhang
,
Z. M.
,
2015
, “
Resonance Enhanced Absorption in a Graphene Monolayer Using Deep Metal Gratings
,”
J. Opt. Soc. Am. B
,
32
(
6
), pp.
1176
1185
.
21.
Zhao
,
B.
, and
Zhang
,
Z. M.
,
2017
, “
Perfect Mid-Infrared Absorption by Hybrid Phonon-Plasmon Polaritons in hBN/Metal-Grating Anisotropic Structures
,”
Int. J. Heat Mass Transfer
,
106
, pp.
1025
1034
.
22.
Lee
,
B. J.
,
Chen
,
Y. B.
, and
Zhang
,
Z. M.
,
2008
, “
Transmission Enhancement Through Nanoscale Metallic Slit Arrays From the Visible to Mid-Infrared
,”
J. Comput. Theor. Nanosci.
,
5
(
2
), pp.
201
213
.
23.
Wang
,
L. P.
,
Lee
,
B. J.
,
Wang
,
X. J.
, and
Zhang
,
Z. M.
,
2009
, “
Spatial and Temporal Coherence of Thermal Radiation in Asymmetric Fabry–Perot Resonance Cavities
,”
Int. J. Heat Mass Transfer
,
52
(
13–14
), pp.
3024
3031
.
24.
Johnson
,
P. B.
, and
Christy
,
R. W.
,
1972
, “
Optical Constants of the Noble Metals
,”
Phys. Rev. B
,
6
(
12
), pp.
4370
4379
.
25.
Chen
,
Y. B.
, and
Zhang
,
Z. M.
,
2007
, “
Design of Tungsten Complex Gratings for Thermophotovoltaic Radiators
,”
Opt. Commun.
,
269
(
2
), pp.
411
417
.
26.
Moharam
,
M. G.
,
Grann
,
E. B.
,
Pommet
,
D. A.
, and
Gaylord
,
T. K.
,
1995
, “
Formulation for Stable and Efficient Implementation of the Rigorous Coupled-Wave Analysis of Binary Gratings
,”
J. Opt. Soc. Am. A
,
12
(
5
), pp.
1068
1076
.
27.
Zhou
,
J.
,
Economon
,
E. N.
,
Koschny
,
T.
, and
Soukoulis
,
C. M.
,
2006
, “
Unifying Approach to Left-Handed Material Design
,”
Opt. Lett.
,
31
(
24
), pp.
3620
3622
.
28.
Engheta
,
N.
,
2007
, “
Circuits With Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials
,”
Science
,
317
(
5845
), pp.
1698
1702
.
29.
Sakurai
,
A.
,
Zhao
,
B.
, and
Zhang
,
Z. M.
,
2014
, “
Resonant Frequency and Bandwidth of Metamaterial Emitters and Absorbers Predicted by an RLC Circuit Model
,”
J. Quant. Spectrosc. Radiat. Transfer
,
149
, pp.
33
40
.
30.
Zhang
,
Z. M.
,
2007
,
Nano/Microscale Heat Transfer
,
McGraw-Hill
,
New York
.
31.
Marquier
,
F.
,
Laroche
,
M.
,
Carminati
,
R.
, and
Greffet
,
J.-J.
,
2007
, “
Anisotropic Polarized Emission of a Doped Silicon Lamellar Grating
,”
ASME J. Heat Transfer
,
129
(
1
), pp.
11
16
.
32.
Zhao
,
B.
,
Wang
,
L. P.
,
Shuai
,
Y.
, and
Zhang
,
Z. M.
,
2013
, “
Thermophotovoltaic Emitters Based on a Two-Dimensional Grating/Thin-Film Nanostructure
,”
Int. J. Heat Mass Transfer
,
67
, pp.
637
645
.
33.
Chen
,
J. X.
,
Wang
,
P.
,
Zhang
,
Z. M.
,
Lu
,
Y. H.
, and
Ming
,
H.
,
2011
, “
The Coupling Between Gap Plasmon Polariton and Magnetic Polariton in a Metallic-Dielectric Multilayer Structure
,”
Phys. Rev. E
,
84
, p.
026603
.
You do not currently have access to this content.