Abstract

This is the first part of a two-paper series that reports the design, experimentation, and results of a spray quenching experiment of a circular metal disk in terrestrial gravity condition. The objective of this experiment is to provide experimental data and corresponding analysis on the heat transfer characteristics and chilldown performance of the cryogenic spray quenching process. In this paper, the presented continuous-flow spray quenching results include the spray-cone angle visualization, spray cooling heat transfer characteristics represented by chilldown curves and boiling curves, gravity effects, and Leidenfrost rewet point temperatures. Additionally, detailed discussion is given on the film boiling heat transfer and rewet temperature in terms of various contributing factors such as gravitational acceleration, spray mass flux, and radial position on the plate. Based on the experimental data, empirical correlations for film boiling heat transfer coefficient, and rewet temperatures are provided. We expect that the current terrestrial study would offer invaluable information for the design of a robust in-space cryogenic propellant storage tank spray chilldown system.

References

1.
Yuan
,
K.
,
Ji
,
Y.
, and
Chung
,
J. N.
,
2007
, “
Cryogenic Chilldown Process Under Low Flow Rates
,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp.
4011
4022
.10.1016/j.ijheatmasstransfer.2007.01.034
2.
Shaeffer
,
R.
,
Hu
,
H.
, and
Chung
,
J. N.
,
2013
, “
An Experimental Study on Liquid Nitrogen Pipe Chilldown and Heat Transfer With Pulse Flows
,”
Int. J. Heat Mass Transfer
,
67
, pp.
955
966
.10.1016/j.ijheatmasstransfer.2013.08.037
3.
Darr
,
S. R.
,
Hu
,
H.
,
Glikin
,
N. G.
,
Hartwig
,
J. W.
,
Majumdar
,
A. K.
,
Leclair
,
A. C.
, and
Chung
,
J. N.
,
2016
, “
An Experimental Study on Terrestrial Cryogenic Transfer Line Chilldown I. Effect of Mass Flux, Equilibrium Quality, and Inlet Subcooling
,”
Int. J. Heat Mass Transfer
,
103
, pp.
1225
1242
.10.1016/j.ijheatmasstransfer.2016.05.019
4.
Darr
,
S. R.
,
Hu
,
H.
,
Glikin
,
N.
,
Hartwig
,
J. W.
,
Majumdar
,
A. K.
,
Leclair
,
A. C.
, and
Chung
,
J. N.
,
2016
, “
An Experimental Study on Terrestrial Cryogenic Tube Chilldown II. Effect of Flow Direction With Respect to Gravity and New Correlation Set
,”
Int. J. Heat Mass Transfer
,
103
, pp.
1243
1260
.10.1016/j.ijheatmasstransfer.2016.08.044
5.
Darr
,
S.
,
Dong
,
J.
,
Glikin
,
N.
,
Hartwig
,
J.
,
Majumdar
,
A.
,
Leclair
,
A.
, and
Chung
,
J.
,
2016
, “
The Effect of Reduced Gravity on Cryogenic Nitrogen Boiling and Pipe Chilldown
,”
npj Microgravity
,
2
(
1
), p.
16033
.10.1038/npjmgrav.2016.33
6.
Chung
,
J. N.
,
Dong
,
J.
,
Wang
,
H.
,
Darr
,
S. R.
, and
Hartwig
,
J. W.
,
2019
, “
Enhancement of Convective Quenching Heat Transfer by Coated Tubes and Intermittent Cryogenic Pulse Flows
,”
Int. J. Heat Mass Transfer
,
141
, pp.
256
264
.10.1016/j.ijheatmasstransfer.2019.06.080
7.
Chung
,
J. N.
,
Darr
,
S. R.
,
Dong
,
J.
,
Wang
,
H.
, and
Hartwig
,
J. W.
,
2020
, “
Heat Transfer Enhancement in Cryogenic Quenching Process
,”
Int. J. Therm. Sci.
,
147
, p.
106117
.10.1016/j.ijthermalsci.2019.106117
8.
Chato
,
D.
, and
Sanabria
,
R.
,
1991
, “
Review and Test of Chilldown Methods for Space-Based Cryogenic Tanks
,”
27th Joint Propulsion Conference, American Institute of Aeronautics and Astronautics
, Sacramento, CA, Jun. 24–27, p. 1843.10.2514/6.1991-1843
9.
Carey
,
V. P.
,
2008
,
Liquid-Vapor Phase-Change Phenomena
,
Taylor & Francis Group, LLC
,
New York
.
10.
Sehmbey
,
M. S.
,
Chow
,
L. C.
,
Hahn
,
O. J.
, and
Pais
,
M. R.
,
1995
, “
Spray Cooling of Power Electronics at Cryogenic Temperatures
,”
J. Thermophys. Heat Transfer
,
9
(
1
), pp.
123
128
.10.2514/3.637
11.
Kato
,
M.
,
Abe
,
Y.
,
Mori
,
Y.
, and
Nagashima
,
A.
,
1995
, “
Spray Cooling Characteristics Under Reduced Gravity
,”
J. Thermophys. Heat Transfer
,
9
(
2
), pp.
378
381
.10.2514/3.675
12.
Yoshida
,
K.-I.
,
Abe
,
Y.
,
Oka
,
T.
,
Mori
,
Y. H.
, and
Nagashima
,
A.
,
2001
, “
Spray Cooling Under Reduced Gravity Condition
,”
ASME J. Heat Transfer-Trans. ASME
,
123
(
2
), pp.
309
318
.10.1115/1.1345887
13.
Yerkes
,
K. L.
,
Michalak
,
T. E.
,
Baysinger
,
K. M.
,
Puterbaugh
,
R.
,
Thomas
,
S. K.
, and
McQuillen
,
J.
,
2006
, “
Variable-Gravity Effects on a Single-Phase Partially-Confined Spray Cooling System
,”
J. Thermophys. Heat Transfer
,
20
(
3
), pp.
361
370
.10.2514/1.18681
14.
Michalak
,
T. E.
,
Yerkes
,
K. L.
,
Thomas
,
S. K.
, and
McQuillen
,
J. B.
,
2010
, “
Acceleration Effects on the Cooling Performance of a Partially Confined FC-72 Spray
,”
J. Thermophys. Heat Transfer
,
24
(
3
), pp.
463
479
.10.2514/1.46547
15.
Liang
,
G.
, and
Mudawar
,
I.
,
2017
, “
Review of Spray Cooling—Part 1: Single-Phase and Nucleate Boiling Regimes, and Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
115
, pp.
1174
1205
.10.1016/j.ijheatmasstransfer.2017.06.029
16.
Liang
,
G.
, and
Mudawar
,
I.
,
2017
, “
Review of Spray Cooling—Part 2: High Temperature Boiling Regimes and Quenching Applications
,”
Int. J. Heat Mass Transfer
,
115
, pp.
1206
1222
.10.1016/j.ijheatmasstransfer.2017.06.022
17.
Burggraf
,
O.
,
1964
, “
An Exact Solution of the Inverse Problem in Heat Conduction Theory and Applications
,”
ASME J. Heat Transfer-Trans. ASME
,
86
(
3
), pp.
373
380
.10.1115/1.3688700
18.
Marquardt
,
E. D.
,
Le
,
J. P.
, and
Radebaugh
,
R.
,
2002
,
Cryocoolers 11
,
Springer US
,
Boston, MA
, pp.
681
687
.
19.
Liu
,
X.
,
Gabour
,
L.
, and
Lienhard
,
J.
,
1993
, “
Stagnation-Point Heat Transfer During Impingement of Laminar Liquid Jets: Analysis Including Surface Tension
,” ASME J. Heat Transfer-Trans. ASME, 115(1), pp.
99
105
.
20.
Estes
,
K. A.
, and
Mudawar
,
I.
,
1995
, “
Correlation of Sauter Mean Diameter and Critical Heat Flux for Spray Cooling of Small Surfaces
,”
Int. J. Heat Mass Transfer
,
38
(
16
), pp.
2985
2996
.10.1016/0017-9310(95)00046-C
21.
Labergue
,
A.
,
Gradeck
,
M.
, and
Lemoine
,
F.
,
2015
, “
Comparative Study of the Cooling of a Hot Temperature Surface Using Sprays and Liquid Jets
,”
Int. J. Heat Mass Transfer
,
81
, pp.
889
900
.10.1016/j.ijheatmasstransfer.2014.11.018
22.
Darr
,
S. R.
,
Dong
,
J.
,
Glikin
,
N.
,
Hartwig
,
J. W.
, and
Chung
,
J. N.
,
2019
, “
Rewet Temperature Correlations for Liquid Nitrogen Boiling Pipe Flows Across Varying Flow Conditions and Orientations
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
5
), p.
051008
.10.1115/1.4042857
23.
Sasaki
,
K.
,
Sugitani
,
Y.
, and
Kawasaki
,
M.
,
1979
, “
Heat Transfer in Spray Cooling on Hot Surface
,”
Tetsu-to-Hagane
,
65
(
1
), pp.
90
96
.10.2355/tetsutohagane1955.65.1_90
24.
Yao
,
S. C.
, and
Cox
,
T. L.
,
2002
, “
A General Heat Transfer Correlation for Impacting Water Sprays on High-Temperature Surfaces
,”
Exp. Heat Transfer
,
15
(
4
), pp.
207
219
.10.1080/08916150290082649
25.
Berenson
,
P. J.
,
1961
, “
Film-Boiling Heat Transfer From a Horizontal Surface
,”
ASME J. Heat Transfer-Trans. ASME
,
83
(
3
), pp.
351
356
.10.1115/1.3682280
You do not currently have access to this content.