Abstract

This work investigates flow and heat transfer under an array of annular jets impinging on a heated moving surface. Numerical solutions of the full Navier–Stokes equation were attempted with a highly refined mesh. This study reports results for Reynolds numbers up to 500. In the surface movement direction, a periodic element from a jet-bank configuration was chosen, and the nondimensional surface velocity was considered from zero (i.e., a stationary plate) to two times the jet velocity. The impact of annular jet impingement over a moving surface on flow and heat transfer characteristics, including the development of the flow field, velocity profiles, skin friction coefficient and topology of skin friction lines, and local as well as surface averaged Nusselt number distribution are presented. It is observed that both the flow field and thermal performance are strongly affected by the surface motion. Heat transfer from the surface initially increases with the increasing surface motion, and after attainment of the highest value, heat transfer reduces with a further increase in surface velocity. However, higher surface velocity leads to higher uniformity in heat transfer, which may be beneficial for situations demanding uniformity in heat transfer.

References

1.
Martin
,
H.
,
1977
, “
Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
,”
Advances in Heat Transfer
,
Elsevier
, Amsterdam, The Netherlands, pp.
1
60
.
2.
Jambunathan
,
K.
,
Lai
,
E.
,
Moss
,
M. A.
, and
Button
,
B. L.
,
1992
, “
A Review of Heat Transfer Data for Single Circular Jet Impingement
,”
Int. J. Heat Fluid Flow
,
13
(
2
), pp.
106
115
.10.1016/0142-727X(92)90017-4
3.
Viskanta
,
R.
,
1993
, “
Heat Transfer to Impinging Isothermal Gas and Flame Jets
,”
Exp. Therm. Fluid Sci.
,
6
(
2
), pp.
111
134
.10.1016/0894-1777(93)90022-B
4.
Ebadian
,
M. A.
, and
Lin
,
C. X.
,
2011
, “
A Review of High-Heat-Flux Heat Removal Technologies
,”
ASME J. Heat Transfer-Trans. ASME
,
133
(
11
), p.
110801
.10.1115/1.4004340
5.
Shukla
,
A. K.
, and
Dewan
,
A.
,
2017
, “
Flow and Thermal Characteristics of Jet Impingement: Comprehensive Review
,”
Int. J. Heat Technol.
,
35
(
1
), pp.
153
166
.10.18280/ijht.350121
6.
Chauhan
,
R.
,
Singh
,
T.
,
Thakur
,
N. S.
,
Kumar
,
N.
,
Kumar
,
R.
, and
Kumar
,
A.
,
2018
, “
Heat Transfer Augmentation in Solar Thermal Collectors Using Impinging Air Jets: A Comprehensive Review
,”
Renewable Sustain. Energy Rev.
, 82, pp.
3179
3190
.10.1016/j.rser.2017.10.025
7.
Chattopadhyay
,
H.
,
2004
, “
Numerical Investigations of Heat Transfer From Impinging Annular Jet
,”
Int. J. Heat Mass Transfer
,
47
(
14–16
), pp.
3197
3201
.10.1016/j.ijheatmasstransfer.2004.02.011
8.
Dutta
,
P.
, and
Chattopadhyay
,
H.
,
2021
, “
Numerical Analysis of Transport Phenomena Under Turbulent Annular Impinging Jet
,”
Comput. Therm. Sci. Int. J.
,
13
(
2
), pp.
1
19
.10.1615/ComputThermalScien.2020035055
9.
Pal
,
T. K.
,
Chattopadhyay
,
H.
, and
Mandal
,
D. K.
,
2019
, “
Flow and Heat Transfer Due to Impinging Annular Jet
,”
Int. J. Fluid Mech. Res.
, 46(
3
), pp.
199
209
.10.1615/InterJFluidMechRes.2018018422
10.
Trávnı́ček
,
Z.
,
Peszyński
,
K.
,
Hošek
,
J.
, and
Wawrzyniak
,
S.
,
2003
, “
Aerodynamic and Mass Transfer Characteristics of an Annular Bistable Impinging Jet With a Fluidic Flip–Flop Control
,”
Int. J. Heat Mass Transfer
,
46
(
7
), pp.
1265
1278
.10.1016/S0017-9310(02)00381-2
11.
Musika
,
W.
,
Wae-Hayee
,
M.
,
Vessakosol
,
P.
,
Niyomwas
,
B.
, and
Nuntadusit
,
C.
,
2014
, “
Investigation of Flow and Heat Transfer Characteristics of Annular Impinging Jet
,”
Adv. Mater. Res.
,
931–932
, pp.
1223
1227
.10.4028/www.scientific.net/AMR.931-932.1223
12.
Kalinina
,
S. V.
,
Terekhov
,
V. I.
, and
Sharov
,
K. A.
,
2015
, “
Special Features of Flow in an Annular Jet Impinging on a Barrier
,”
Fluid Dyn.
,
50
(
5
), pp.
665
671
.10.1134/S0015462815050087
13.
Terekhov
,
V. I.
,
Kalinina
,
S. V.
, and
Sharov
,
K. A.
,
2016
, “
An Experimental Investigation of Flow Structure and Heat Transfer in an Impinging Annular Jet
,”
Int. Commun. Heat Mass Transfer
,
79
, pp.
89
97
.10.1016/j.icheatmasstransfer.2016.10.011
14.
Afroz
,
F.
, and
Sharif
,
M. A. R.
,
2022
, “
Heat Transfer Due to Turbulent Annular Impinging Jet With a Bullet Extension at the End of the Inner Blockage Rod
,”
Case Stud. Therm. Eng.
,
29
, p.
101704
.10.1016/j.csite.2021.101704
15.
Polat
,
S.
,
Huang
,
B.
,
Mujumdar
,
A. S.
, and
Douglas
,
W. J. M.
,
1989
, “
Numerical Flow and Heat Transfer Under Impinging Jets: A Review
,”
Annu. Rev. Heat Transfer
,
2
(
2
), pp.
157
197
.10.1615/AnnualRevHeatTransfer.v2.60
16.
Chen
,
J.
,
Wang
,
T.
, and
Zumbrunnen
,
D. A.
,
1994
, “
Numerical Analysis of Convective Heat Transfer From a Moving Plate Cooled by an Array of Submerged Planar Jets
,”
Numer. Heat Transfer Part A Appl.
,
26
(
2
), pp.
141
160
.10.1080/10407789408955985
17.
Ashforth-Frost
,
S.
,
Jambunathan
,
K.
, and
Whitney
,
C. F.
,
1997
, “
Velocity and Turbulence Characteristics of a Semiconfined Orthogonally Impinging Slot Jet
,”
Exp. Therm. Fluid Sci.
,
14
(
1
), pp.
60
67
.10.1016/S0894-1777(96)00112-4
18.
Chattopadhyay
,
H.
,
2007
, “
Impinging Heat Transfer Due to a Turbulent Annular Jet
,”
Int. J. Transp. Phenom.
,
9
(
4
), pp.
287
296
.http://www.oldcitypublishing.com/journals/ijtp-home/ijtp-issue-contents/ijtp-volume-9-number-4-2007/ijtp-9-4-p-287-296/
19.
Afroz
,
F.
, and
Sharif
,
M. A. R.
,
2018
, “
Numerical Study of Turbulent Annular Impinging Jet Flow and Heat Transfer From a Flat Surface
,”
Appl. Therm. Eng.
,
138
, pp.
154
172
.10.1016/j.applthermaleng.2018.04.007
20.
Afroz
,
F.
, and
Sharif
,
M. A. R.
,
2020
, “
Numerical Investigation of Heat Transfer From a Plane Surface Due to Turbulent Annular Swirling Jet Impingement
,”
Int. J. Therm. Sci.
,
151
, p.
106257
.10.1016/j.ijthermalsci.2019.106257
21.
Dutta
,
P.
, and
Chattopadhyay
,
H.
,
2021
, “
Computational Analysis of Heat Transfer Due to Turbulent Annular Jet Impingement
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
1080
, p.
12031
.10.1088/1757-899X/1080/1/012031
22.
Pal
,
T. K.
,
Chattopadhyay
,
H.
, and
Mandal
,
D. K.
,
2021
, “
Enhanced Heat Transfer Under Vectored Annular Jet
,”
Heat Transfer Res.
,
52
(
3
), pp.
15
28
.10.1615/HeatTransRes.2021036515
23.
Afroz
,
F.
, and
Sharif
,
M. A. R.
,
2021
, “
Heat Transfer From a Heated Flat Surface Due to Swirling Coaxial Turbulent Jet Impingement
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
2
), p.
21009
.10.1115/1.4047379
24.
Chattopadhyay
,
H.
, and
Cemal Benim
,
A.
,
2011
, “
Turbulent Heat Transfer Over a Moving Surface Due to Impinging Slot Jets
,”
ASME J. Heat Transfer-Trans. ASME
,
133
(
10
), p.
104502
.10.1115/1.4004075
25.
Chattopadhyay
,
H.
,
Biswas
,
G.
, and
Mitra
,
N. K.
,
2002
, “
Heat Transfer From a Moving Surface Due to Impinging Slot Jets
,”
ASME J. Heat Transfer-Trans. ASME
,
124
(
3
), pp.
433
440
.10.1115/1.1470489
26.
Cziesla
,
T.
,
Biswas
,
G.
,
Chattopadhyay
,
H.
, and
Mitra
,
N. K.
,
2001
, “
Large-Eddy Simulation of Flow and Heat Transfer in an Impinging Slot Jet
,”
Int. J. Heat Fluid Flow
,
22
(
5
), pp.
500
508
.10.1016/S0142-727X(01)00105-9
27.
Chattopadhyay
,
H.
, and
Saha
,
S. K.
,
2001
, “
Numerical Investigations of Heat Transfer Over a Moving Surface Due to Impinging Knife-Jets
,”
Numer. Heat Transfer Part A Appl.
,
39
(
5
), pp.
531
549
.10.1080/104077801750111629
28.
Chattopadhyay
,
H.
, and
Saha
,
S. K.
,
2002
, “
Simulation of Laminar Slot Jets Impinging on a Moving Surface
,”
ASME J. Heat Transfer-Trans. ASME
,
124
(
6
), pp.
1049
1055
.10.1115/1.1501089
29.
Chattopadhyay
,
H.
, and
Saha
,
S. K.
,
2003
, “
Turbulent Flow and Heat Transfer From a Slot Jet Impinging on a Moving Plate
,”
Int. J. Heat Fluid Flow
,
24
(
5
), pp.
685
697
.10.1016/S0142-727X(03)00062-6
30.
Senter
,
J.
,
2006
, “Analyses Expérimentale et Numérique Des Écoulements et Des Transferts de Chaleur Convectifs Produit Par Un Jet Plan Impactant Une Plaque Plane Mobile,”
Ph.D. dissertation
, Nantes Université, France.http://www.theses.fr/2006NANT2099
31.
Senter
,
J.
, and
Solliec
,
C.
,
2007
, “
Flow Field Analysis of a Turbulent Slot Air Jet Impinging on a Moving Flat Surface
,”
Int. J. Heat Fluid Flow
,
28
(
4
), pp.
708
719
.10.1016/j.ijheatfluidflow.2006.08.002
32.
Hofmann
,
H. M.
,
Kaiser
,
R.
,
Kind
,
M.
, and
Martin
,
H.
,
2007
, “
Calculations of Steady and Pulsating Impinging Jets—An Assessment of 13 Widely Used Turbulence Models
,”
Numer. Heat Transfer Part B Fundam.
,
51
(
6
), pp.
565
583
.10.1080/10407790701227328
33.
Sharif
,
M. A. R.
, and
Banerjee
,
A.
,
2009
, “
Numerical Analysis of Heat Transfer Due to Confined Slot-Jet Impingement on a Moving Plate
,”
Appl. Therm. Eng.
,
29
(
2–3
), pp.
532
540
.10.1016/j.applthermaleng.2008.03.011
34.
Chattopadhyay
,
H.
,
2006
, “
Effect of Surface Motion on Transport Processes Due to Circular Impinging Jets—A Numerical Study
,”
Dry. Technol.
,
24
(
11
), pp.
1347
1351
.10.1080/07373930600951117
35.
Kadiyala
,
P. K.
, and
Chattopadhyay
,
H.
,
2017
, “
Numerical Simulation of Transport Phenomena Due to Array of Round Jets Impinging on Hot Moving Surface
,”
Dry. Technol.
,
35
(
14
), pp.
1742
1754
.10.1080/07373937.2016.1275672
36.
Kadiyala
,
P. K.
, and
Chattopadhyay
,
H.
,
2018
, “
Numerical Analysis of Heat Transfer From a Moving Surface Due to Impingement of Slot Jets
,”
Heat Transfer Eng.
,
39
(
2
), pp.
98
106
.10.1080/01457632.2017.1288045
37.
Ichimiya
,
K.
, and
Tsukamoto
,
K.
,
2010
, “
Heat Transfer Characteristics of a Swirling Laminar Impinging Jet
,”
ASME J. Heat Transfer-Trans. ASME
,
132
(
1
), p.
012201
.10.1115/1.3211870
38.
Kumar
,
C. S.
, and
Pattamatta
,
A.
,
2018
, “
Assessment of Heat Transfer Enhancement Using Metallic Porous Foam Configurations in Laminar Slot Jet Impingement: An Experimental Study
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
2
), p.
022202
.10.1115/1.4037540
39.
Dewan
,
A.
,
Dutta
,
R.
, and
Srinivasan
,
B.
,
2012
, “
Recent Trends in Computation of Turbulent Jet Impingement Heat Transfer
,”
Heat Transfer Eng.
,
33
(
4–5
), pp.
447
460
.10.1080/01457632.2012.614154
40.
Ekkad
,
S. V.
, and
Singh
,
P.
,
2021
, “
A Modern Review on Jet Impingement Heat Transfer Methods
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
6
), p.
64001
.10.1115/1.4049496
41.
Ganesh
,
N.
,
Dutta
,
P.
,
Ramachandran
,
M.
,
Bhoi
,
A. K.
, and
Kalita
,
K.
,
2019
, “
Robust Metamodels for Accurate Quantitative Estimation of Turbulent Flow in Pipe Bends
,”
Eng. Comput.
,
36
, pp.
1
18
.10.1007/s00366-019-00748-7
42.
Narayanan
,
G.
,
Joshi
,
M.
,
Dutta
,
P.
, and
Kalita
,
K.
,
2019
, “
PSO-Tuned Support Vector Machine Metamodels for Assessment of Turbulent Flows in Pipe Bends
,”
Eng. Comput.
,
37
(
3
), pp.
981
1001
.10.1108/EC-05-2019-0244
43.
Kadiyala
,
P. K.
, and
Chattopadhyay
,
H.
,
2011
, “
Optimal Location of Three Heat Sources on the Wall of a Square Cavity Using Genetic Algorithms Integrated With Artificial Neural Networks
,”
Int. Commun. Heat Mass Transfer
,
38
(
5
), pp.
620
624
.10.1016/j.icheatmasstransfer.2011.03.018
44.
Lee
,
H. W.
,
Teng
,
Y. J.
,
Azid
,
I. A.
, and
Seetharamu
,
K. N.
,
2007
, “
Neuro‐Genetic Optimization of Micro Compact Heat Exchanger
,”
Int. J. Numer. Methods Heat Fluid Flow
,
17
(
1
), pp.
20
33
.10.1108/09615530710716063
45.
Kadiyala
,
P. K.
, and
Chattopadhyay
,
H.
,
2014
, “
Neuro-Genetic Optimization of Laminar Slot Jets Impinging on a Moving Surface
,”
Int. Commun. Heat Mass Transfer
,
59
, pp.
143
147
.10.1016/j.icheatmasstransfer.2014.10.023
46.
Dutta
,
P.
, and
Chattopadhyay
,
H.
,
2019
, “
Numerical Simulation of Heat Transfer Due to Array of Laminar Annular Jets Impinging on Hot Moving Surface
,”
Fifth International Conference on Advances in Mechanical Engineering, Istanbul
, Turkey, Dec. 17–19, pp.
162
170
.https://www.academia.edu/45436749/NUMERICAL_SIMULATION_OF_HEAT_TRANSFER_DUE_TO_ARRAY_OF_LAMINAR_ANNULAR_JETS_IMPINGING_ON_HOT_MOVING_SURFACE
47.
Biswas
,
G.
, and
Chattopadhyay
,
H.
,
1992
, “
Heat Transfer in a Channel With Built-In Wing-Type Vortex Generators
,”
Int. J. Heat Mass Transfer
,
35
(
4
), pp.
803
814
.10.1016/0017-9310(92)90248-Q
48.
Abraham
,
J. P.
,
Sparrow
,
E. M.
, and
Tong
,
J. C. K.
,
2009
, “
Heat Transfer in All Pipe Flow Regimes: Laminar, Transitional/Intermittent, and Turbulent
,”
Int. J. Heat Mass Transfer
,
52
(
3–4
), pp.
557
563
.10.1016/j.ijheatmasstransfer.2008.07.009
49.
Menter
,
F. R.
,
Esch
,
T.
, and
Kubacki
,
S.
,
2002
, “
Transition Modelling Based on Local Variables
,”
Eng. Turbul. Model. Exp.
,
5
, pp.
555
564
.10.1016/B978-008044114-6/50053-3
50.
Menter
,
F. R.
,
Langtry
,
R. B.
,
Likki
,
S. R.
,
Suzen
,
Y. B.
,
Huang
,
P. G.
, and
Völker
,
S.
,
2006
, “
A Correlation-Based Transition Model Using Local Variables—Part I: Model Formulation
,”
ASME J. Turbomach.
,
128
(
3
), pp.
413
422
.10.1115/1.2184352
51.
Wilcox
,
D. C.
,
1993
, “
Comparison of Two-Equation Turbulence Models for Boundary Layers With Pressure Gradient
,”
AIAA J.
,
31
(
8
), pp.
1414
1421
.10.2514/3.11790
52.
Suzen
,
Y. B.
, and
Huang
,
P. G.
,
2000
, “
Modeling of Flow Transition Using an Intermittency Transport Equation
,”
ASME J Fluids Eng.
,
122
(
2
), pp.
273
284
.10.1115/1.483255
53.
Patankar
,
S.
,
2018
,
Numerical Heat Transfer and Fluid Flow
,
CRC Press
, Boca Raton, FL.
54.
Gbadebo
,
S. A.
,
Cumpsty
,
N. A.
, and
Hynes
,
T. P.
,
2005
, “
Three-Dimensional Separations in Axial Compressors
,”
ASME J. Turbomach.
,
127
(
2
), pp.
331
339
.10.1115/1.1811093
55.
Tan
,
C.
,
Zhang
,
H.
,
Xia
,
H.
,
Chen
,
H.
, and
Yamamoto
,
A.
,
2010
, “
Blade Bowing Effect on Aerodynamic Performance of a Highly Loaded Turbine Cascade
,”
J. Propuls. Power
,
26
(
3
), pp.
604
608
.10.2514/1.45308
56.
Zhao
,
Z.
,
Luo
,
L.
,
Qiu
,
D.
,
Wang
,
S.
,
Wang
,
Z.
, and
Sundén
,
B.
,
2021
, “
On the Topology of Vortex Structures and Heat Transfer of a Gas Turbine Blade Internal Tip With Different Arrangement of Delta-Winglet Vortex Generators
,”
Int. J. Therm. Sci.
,
160
, p.
106676
.10.1016/j.ijthermalsci.2020.106676
57.
Délery
,
J. M.
,
2001
, “
Robert Legendre and Henri Werlé: Toward the Elucidation of Three-Dimensional Separation
,”
Annu. Rev. Fluid Mech.
,
33
(
1
), pp.
129
154
.10.1146/annurev.fluid.33.1.129
You do not currently have access to this content.