Abstract

This study analyzes the thermo-fluid characteristics of the solar air heater duct (SAHD) consisting of W-shaped transverse ribs on the collector plate. The results of the study are presented with the appearance of Nusselt number, friction factor, thermo-hydraulic performance parameter (THPP), and contours of various fluid properties. Different roughness and flow parameters are considered for the computational study, like Reynolds number (Re) and nondimensional pitch (P/e). Re changes from 3800 to 18,000, and the nondimensional pitch changes from 7.5 to 18.75. The nondimensional height remains constant for the computational study. Aluminum was taken as the material of the absorber plate, and an isoheat-flux condition was employed on the plate with 1000 W/m2. The highest value of THPP obtained is 2.05 at P/e =7.5 for Re = 12,000.

References

1.
Lanjewar
,
A.
,
Bhagoria
,
J. L.
, and
Sarviya
,
R. M.
,
2011
, “
Heat Transfer and Friction in Solar Air Heater Duct With V-Shaped Rib Roughness on Absorber Plate
,”
Energy
,
36
(
7
), pp.
4531
4541
.10.1016/j.energy.2011.03.054
2.
Sahu
,
M. M.
, and
Bhagoria
,
J. L.
,
2005
, “
Augmentation of Heat Transfer Coefficient by Using 90° Broken Transverse Ribs on Absorber Plate of Solar Air Heater
,”
Renewable Energy
,
30
(
13
), pp.
2057
2073
.10.1016/j.renene.2004.10.016
3.
Gawande
,
V. B.
,
Dhoble
,
A. S.
,
Zodpe
,
D. B.
, and
Chamoli
,
S.
,
2016
, “
Experimental and CFD Investigation of Convection Heat Transfer in Solar Air Heater With Reverse L-Shaped Ribs
,”
Sol. Energy
,
131
, pp.
275
295
.10.1016/j.solener.2016.02.040
4.
Ansari
,
M.
, and
Bazargan
,
M.
,
2018
, “
Optimization of Flat Plate Solar Air Heaters With Ribbed Surfaces
,”
Appl. Therm. Eng.
,
136
, pp.
356
363
.10.1016/j.applthermaleng.2018.02.099
5.
Prasad
,
B. N.
,
Kumar
,
A.
, and
Singh
,
K. D. P.
,
2015
, “
Optimization of Thermo Hydraulic Performance in Three Sides Artificially Roughened Solar Air Heaters
,”
Sol. Energy
,
111
, pp.
313
319
.10.1016/j.solener.2014.10.030
6.
Kumar
,
A.
, and
Kim
,
M. H.
,
2014
, “
Numerical Optimization of Solar Air Heaters Having Different Types of Roughness Shapes on the Heated Plate—Technical Note
,”
Energy
,
72
, pp.
731
738
.10.1016/j.energy.2014.05.100
7.
Chamoli
,
S.
,
2015
, “
ANN and RSM Approach for Modeling and Optimization of Designing Parameters for a V Down Perforated Baffle Roughened Rectangular Channel
,”
Alexandria Eng. J.
,
54
(
3
), pp.
429
446
.10.1016/j.aej.2015.03.018
8.
Prasad
,
B. N.
, and
Saini
,
J. S.
,
1988
, “
Effect of Artificial Roughness on Heat Transfer and Friction Factor in a Solar Air Heater
,”
Sol. Energy
,
41
(
6
), pp.
555
560
.10.1016/0038-092X(88)90058-8
9.
Kumar
,
V.
,
2019
, “
Thermal and Thermohydraulic Performance Analysis of Three Sides Artificially Roughened Solar Collectors
,”
Sol. Energy
,
190
, pp.
212
227
.10.1016/j.solener.2019.08.018
10.
Kumar
,
V.
,
2019
, “
Nusselt Number and Friction Factor Correlations of Three Sides Concave Dimple Roughened Solar Air Heater
,”
Renew. Energy
,
135
, pp.
355
377
.10.1016/j.renene.2018.12.002
11.
Yadav
,
A. S.
, and
Bhagoria
,
J. L.
,
2013
, “
Heat Transfer and Fluid Flow Analysis of Solar Air Heater: A Review of CFD Approach
,”
Renewable Sustainable Energy Rev.
,
23
, pp.
60
79
.10.1016/j.rser.2013.02.035
12.
Yadav
,
A. S.
, and
Bhagoria
,
J. L.
,
2013
, “
A CFD (Computational Fluid Dynamics) Based Heat Transfer and Fluid Flow Analysis of a Solar Air Heater Provided With Circular Transverse Wire Rib Roughness on the Absorber Plate
,”
Energy
,
55
, pp.
1127
1142
.10.1016/j.energy.2013.03.066
13.
Yadav
,
A. S.
, and
Bhagoria
,
J. L.
,
2014
, “
A Numerical Investigation of Turbulent Flows Through an Artificially Roughened Solar Air Heater
,”
Numer. Heat Transfer, Part A
,
65
(
7
), pp.
679
698
.10.1080/10407782.2013.846187
14.
Yadav
,
A. S.
, and
Bhagoria
,
J. L.
,
2014
, “
A Numerical Investigation of Square Sectioned Transverse Rib Roughened Solar Air Heater
,”
Int. J. Therm. Sci.
,
79
, pp.
111
131
.10.1016/j.ijthermalsci.2014.01.008
15.
Mahanand
,
Y.
, and
Senapati
,
J. R.
,
2021
, “
Thermo-Hydraulic Performance Analysis of a Solar Air Heater (SAH) With Quarter-Circular Ribs on the Absorber Plate: A Comparative Study
,”
Int. J. Therm. Sci.
,
161
, p.
106747
.10.1016/j.ijthermalsci.2020.106747
16.
Jin
,
D.
,
Zhang
,
M.
,
Wang
,
P.
, and
Xu
,
S.
,
2015
, “
Numerical Investigation of Heat Transfer and Fluid Flow in a Solar Air Heater Duct With Multi V-Shaped Ribs on the Absorber Plate
,”
Energy
,
89
, pp.
178
190
.10.1016/j.energy.2015.07.069
17.
Ngo
,
T. T.
, and
Phu
,
N. M.
,
2019
, “
Computational Fluid Dynamics Analysis of the Heat Transfer and Pressure Drop of Solar Air Heater With Conic-Curve Profile Ribs
,”
J. Therm. Anal. Calorim.
,
139
, pp. 3235–3246.10.1007/s10973-019-08709-4
18.
Patel
,
S. S.
, and
Lanjewar
,
A.
,
2019
, “
Experimental and Numerical Investigation of Solar Air Heater With Novel V-Rib Geometry
,”
J. Energy Storage
,
21
, pp.
750
764
.10.1016/j.est.2019.01.016
19.
Singh
,
I.
, and
Singh
,
S.
,
2018
, “
CFD Analysis of Solar Air Heater Duct Having Square Wave Profiled Transverse Ribs as Roughness Elements
,”
Sol. Energy
,
162
, pp.
442
453
.10.1016/j.solener.2018.01.019
20.
Kumar
,
S.
, and
Saini
,
R. P.
,
2009
, “
CFD Based Performance Analysis of a Solar Air Heater Duct Provided With Artificial Roughness
,”
Renewable Energy
,
34
(
5
), pp.
1285
1291
.10.1016/j.renene.2008.09.015
21.
Kumar
,
A.
, and
Kim
,
M. H.
,
2016
, “
Heat Transfer and Fluid Flow Characteristics in Air Duct With Various V-Pattern Rib Roughness on the Heated Plate: A Comparative Study
,”
Energy
,
103
, pp.
75
85
.10.1016/j.energy.2016.02.149
22.
Mahanand
,
Y.
, and
Senapati
,
J. R.
,
2020
, “
Thermal Enhancement Study of a Transverse Inverted-T Shaped Ribbed Solar Air Heater
,”
Int. Commun. Heat Mass Transfer
,
119
, p.
104922
.10.1016/j.icheatmasstransfer.2020.104922
23.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
2013
,
Solar Engineering of Thermal Processes
, 4th ed.,
John A.
Duffie Beckman
, eds.,
Wiley
,
Hoboken, NJ
.
24.
Thakur
,
D. S.
,
Khan
,
M. K.
, and
Pathak
,
M.
,
2017
, “
Solar Air Heater With Hyperbolic Ribs: 3D Simulation With Experimental Validation
,”
Renewable Energy
,
113
, pp.
357
368
.10.1016/j.renene.2017.05.096
25.
McAdams
,
W. H.
,
1942
,
Heat Transmission
,
McGraw-Hill
,
New York
.
26.
Bhatti
,
M. S.
, and
Shah
,
R. K.
,
1987
,
Turbulent and Transition Flow Convective Heat Transfer in Ducts
, Wiley Interscience, New York.
27.
Webb
,
R. L.
, and
Eckert
,
E. R. G.
,
1972
, “
Application of Rough Surfaces to Heat Exchanger Design
,”
Int. J. Heat Mass Transfer
,
15
(
9
), pp.
1647
1658
.10.1016/0017-9310(72)90095-6
28.
Singh
,
S.
,
2020
, “
Experimental and Numerical Investigations of a Single and Double Pass Porous Serpentine Wavy Wiremesh Packed Bed Solar Air Heater
,”
Renewable Energy
,
145
, pp.
1361
1387
.10.1016/j.renene.2019.06.137
29.
Zina
,
B.
,
Filali
,
A.
,
Laouedj
,
S.
, and
Benamara
,
N.
,
2019
, “
Numerical Investigation of a Solar Air Heater (SAH) With Triangular Artificial Roughness Having a Curved Top Corner
,”
J. Appl. Fluid Mech.
,
12
(
6
), pp.
1919
1928
.10.29252/jafm.12.06.29927
30.
Yadav
,
A. S.
, and
Bhagoria
,
J. L.
,
2014
, “
A CFD Based Thermo-Hydraulic Performance Analysis of an Artificially Roughened Solar Air Heater Having Equilateral Triangular Sectioned Rib Roughness on the Absorber Plate
,”
Int. J. Heat Mass Transfer
,
70
, pp.
1016
1039
.10.1016/j.ijheatmasstransfer.2013.11.074
31.
Ahmad
,
I.
,
Khan
,
N. H.
,
Hassan
,
M. A.
, and
Paswan
,
M. K.
,
2020
, “
Three-Dimensional Thermo-Hydraulic Analysis of Solar Air Heater With Equilateral Prism Shape Rib Roughness
,”
ASME J. Sol. Energy Eng.
,
142
(
5
), p.
051001
.10.1115/1.4046088
You do not currently have access to this content.