Abstract

Intercoolers utilized in turbocharged engines are critically essential to efficiently improve the engine volumetric efficiency and therefore the engine specific power. Although boosting the internal combustion engines has been extensively investigated, further studies are required to provide relevant approaches to optimize the heat transfer coefficient. This paper experimentally and theoretically investigates the influence of inlet coolant velocity on heat transfer characteristics of an air-to-water intercooler equipped in a turbocharged diesel engine. This aims to optimize the heat transfer rate from water to air under typical engine operating conditions. The experiment has been conducted using a fully equipped engine testbed. The engine is turbocharged with a plate-fin intercooler. The intercooler is a perpendicular air–water heat transfer system that could be suitable for boosted marine engines or power generators. A simulation model was also developed using the finite volume model in the ansysfluent package. The distributions of inlet and outlet temperature, pressure, and velocity of air and coolant under various inlet water velocity and engine operating conditions are examined. The optimal heat transfer rate from air to water was achieved for this intercooler. The outlet air temperature after the intercooler decreases by about 10 °C, engine thermal efficiency increases by 0.7% approximately, engine power enhances by 2.5%, and the specific fuel consumption decreases by 0.82%. The CFD simulation and experiment model developed in this study for the plate-fin water intercooler could be a useful approach to optimize other intercooler systems. In this study, with a 270 × 270 × 10 mm plate-fin perpendicular air–water intercooler, an optimal cooling water velocity of 1.0 m/s, corresponding with a flowrate of 1780 liter/hr, is achieved.

References

1.
Feng
,
L.
,
Du
,
X.
,
Yang
,
Y.
, and
Yang
,
L.
,
2011
, “
Study on Heat Transfer Enhancement of Discontinuous Short Wave Finned Flat Tube
,”
Sci. China Technol. Sci.
,
54
(
12
), pp.
3281
3288
.10.1007/s11431-011-4572-0
2.
Taylor
,
C. F.
,
1985
,
The Internal-Combustion Engine in Theory and Practice: Combustion, Fuels, Materials, Design
,
MIT Press
,
Cambridge, MA
.
3.
Tuckerman
,
D.
, and
Pease
,
R.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.10.1109/EDL.1981.25367
4.
Norris
,
R.
, and
Spofford
,
W.
,
1942
, “
High Performance Fins for Heat Transfer
,”
ASME J. Heat Transfer-Trans. ASME
,
64
(
7
), pp.
489
497
.
5.
Shah
,
R. K.
, and
London
,
A. L.
,
1968
, “
Offset Rectangular Plate-Fin Surfaces-Heat Transfer and Flow Friction Characteristics
,”
ASME J. Eng. Gas Turbines Power
,
90
(
3
), pp. 2
18
228
.10.1115/1.3609175
6.
Wieting
,
A. R.
,
1975
, “
Empirical Correlations for Heat Transfer and Flow Friction Characteristics of Rectangular Offset-Fin Plate-Fin Heat Exchangers
,”
ASME J. Heat Transfer-Trans. ASME
,
97
(
3
), pp. 488–490.10.1115/1.3450412
7.
Sparrow
,
E.
, and
Liu
,
C.
,
1979
, “
Heat-Transfer, Pressure-Drop and Performance Relationships for in-Line, Staggered, and Continuous Plate Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
22
(
12
), pp.
1613
1625
.10.1016/0017-9310(79)90078-4
8.
Suzuki
,
K.
,
Hirai
,
E.
,
Miyake
,
T.
, and
Sato
,
T.
,
1985
, “
Numerical and Experimental Studies on a Two-Dimensional Model of an Offset-Strip-Fin Type Compact Heat Exchanger Used at Low Reynolds Number
,”
Int. J. Heat Mass Transfer
,
28
(
4
), pp.
823
836
.10.1016/0017-9310(85)90232-7
9.
Baliga
,
B.
, and
Azrak
,
R.
,
1986
, “
Laminar Fully Developed Flow and Heat Transfer in Triangular Plate-Fin Ducts
,”
ASME J. Heat Transfer-Trans. ASME
,
108
(
1
), pp.
24
34
.10.1115/1.3246900
10.
Xiao
,
Q.
,
Cheng
,
B.
, and
Tao
,
W.
,
1992
, “
Experimental Study on Effect of Interwall Tube Cylinder on Heat/Mass Transfer Characteristics of Corrugated Plate Fin-and-Tube Exchanger Configuration
,”
ASME J. Heat Transfer-Trans. ASME
,
114
(
3
), pp.
755
759
.10.1115/1.2911345
11.
Kim
,
N.-H.
,
Yun
,
J.-H.
, and
Webb
,
R.
,
1997
, “
Heat Transfer and Friction Correlations for Wavy Plate Fin-and-Tube Heat Exchangers
,”
ASME J. Heat Transfer-Trans. ASME
,
119
(
3
), pp. 560–567.10.1115/1.2824141
12.
Ito
,
T.
,
Yuan
,
J.
, and
Sundé N
,
B.
,
2005
, “
Analysis of Compact Heat Exchangers as an Intercooler in PEMFC Systems
,”
ASME Paper No. HT2005-72460.
13.
Darici
,
S.
,
Canli
,
E.
,
Dogan
,
S.
, and
Ozgoren
,
M.
,
2012
, “
Determination of Heat Transfer Rate and Pressure Drop Performance of an Intercooler for Heavy Duty Engines
,”
Int. J. Arts Sci.
,
5
(
7
), p.
43
.https://www.researchgate.net/publication/305260193_Determination_of_Heat_transfer_rate_and_pressure_drop_performance_of_an_intercooler_for_heavy_duty_engines
14.
Lin
,
K.-T.
,
Shi
,
D.
,
Jog
,
M. A.
, and
Manglik
,
R. M.
,
2020
, “
General Correlations for Laminar Flow Friction Loss and Heat Transfer in Plain Rectangular Plate-Fin Cores
,”
ASME J. Heat Transfer-Trans. ASME
,
142
(
12
), pp.
1
45
.https://www.osti.gov/servlets/purl/1797982
15.
Mulamootil
,
J. K.
, and
Dash
,
S. K.
,
2018
, “
Numerical Investigation of Natural Convection Heat Transfer From an Array of Horizontal Fins in non-Newtonian Power-Law Fluids
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
2
), pp.
022501
022508
.10.1115/1.4037537
16.
Kadle
,
D.
, and
Sparrow
,
E.
,
1986
, “
Numerical and Experimental Study of Turbulent Heat Transfer and Fluid Flow in Longitudinal Fin Arrays
,”
ASME J. Heat Transfer-Trans. ASME
,
108
(
1
), pp.
16
23
.10.1115/1.3246883
17.
Hong
,
S. K.
,
Rhee
,
D.-H.
, and
Cho
,
H. H.
,
2007
, “
Effects of Fin Shapes and Arrangements on Heat Transfer for Impingement∕ Effusion Cooling With Crossflow
,”
ASME J. Heat Transfer-Trans. ASME
,
129
(
12
), pp.
1697
1107
.10.1115/1.2767727
18.
Hu
,
S.
, and
Herold
,
K. E.
,
1995
, “
Prandtl Number Effect on Offset Fin Heat Exchanger Performance: Experimental Results
,”
Int. J. Heat Mass Transfer
,
38
(
6
), pp.
1053
1061
.10.1016/0017-9310(94)00220-P
19.
Fiebig
,
M.
,
Gü Ntermann
,
T.
, and
Mitra
,
N.
,
1995
, “
Numerical Analysis of Heat Transfer and Flow Loss in a Parallel Plate Heat Exchanger Element With Longitudinal Vortex Generators as Fins
,”
ASME J. Heat Transfer-Trans. ASME
,
117
(
4
), pp.
1064
1067
.10.1115/1.2836284
20.
Kelkar
,
K. M.
, and
Patankar
,
S.
,
1987
, “
Numerical Prediction of Flow and Heat Transfer in a Parallel Plate Channel With Staggered Fins
,”
ASME J. Heat Transfer-Trans. ASME
,
109
(
1
), pp.
25
30
.10.1115/1.3248058
21.
Maughan
,
J.
, and
Incropera
,
F.
,
1990
, “
Mixed Convection Heat Transfer With Longitudinal Fins in a Horizontal Parallel Plate Channel: Part II-Experimental Results
,”
ASME J. Heat Transfer-Trans. ASME
,
112
(
3
), pp.
612
618
.10.1115/1.2910431
22.
Sparrow
,
E. M.
,
Ramsey
,
J.
, and
Altemani
,
C.
,
1980
, “
Experiments on in-Line Pin Fin Arrays and Performance Comparisons With Staggered Arrays
,”
ASME J. Heat Transfer-Trans. ASME
,
102
(
1
), p4. 41–50
.10.1115/1.3244247
23.
Sparrow
,
E.
, and
Chyu
,
M.
,
1982
, “
Conjugate Forced Convection-Conduction Analysis of Heat Transfer in a Plate Fin
,”
ASME J. Heat Transfer-Trans. ASME
,
104
(
1
), pp. 204–206.10.1115/1.3245055
24.
Yang
,
Y.
,
Li
,
Y.
,
Si
,
B.
,
Zheng
,
J.
, and
Kang
,
R.
,
2016
, “
Analysis of the Fin Performance of Offset Strip Fins Used in Plate-Fin Heat Exchangers
,”
ASME J. Heat Transfer-Trans. ASME
,
138
(
10
), pp.
1018011
1018019
.
25.
Howe
,
B.
,
Chambers
,
A.
,
Klotz
,
S.
,
Cheung
,
T.
, and
Street
,
R.
,
1982
, “
Comparison of Profiles and Fluxes of Heat and Momentum Above and Below an Air-Water Interface
,”
ASME J. Heat Transfer-Trans. ASME
,
104
(
1
), pp. 34–39.10.1115/1.3245064
26.
Kim
,
S.
,
Paek
,
J.
, and
Kang
,
B.
,
2000
, “
Flow and Heat Transfer Correlations for Porous Fin in a Plate-Fin Heat Exchanger
,”
ASME J. Heat Transfer-Trans. ASME
,
122
(
3
), pp.
572
578
.10.1115/1.1287170
27.
Peng
,
H.
, and
Ling
,
X.
,
2008
, “
Numerical Modeling and Experimental Verification of Flow and Heat Transfer Over Serrated Fins at Low Reynolds Number
,”
Exp. Therm. Fluid Sci.
,
32
(
5
), pp.
1039
1048
.10.1016/j.expthermflusci.2007.11.021
28.
Joshi
,
H. M.
, and
Webb
,
R. L.
,
1987
, “
Heat Transfer and Friction in the Offset Stripfin Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
30
(
1
), pp.
69
84
.10.1016/0017-9310(87)90061-5
29.
Zhu
,
Y.
, and
Li
,
Y.
,
2008
, “
Three-Dimensional Numerical Simulation on the Laminar Flow and Heat Transfer in Four Basic Fins of Plate-Fin Heat Exchangers
,”
ASME J. Heat Transfer-Trans. ASME
,
130
(
11
), p.
111801
.10.1115/1.2970072
30.
Xie
,
G.
,
Sundén
,
B.
, and
Wang
,
Q.
,
2008
, “
Optimization of Compact Heat Exchangers by a Genetic Algorithm
,”
Appl. Therm. Eng.
,
28
(
8–9
), pp.
895
906
.10.1016/j.applthermaleng.2007.07.008
31.
Moslem
,
Y.
,
Amer
,
N. D.
, and
Hossein
,
M.
,
2011
, “
Second Law Based Optimization of a Plate Fin Heat Exchanger Using Imperialist Competitive Algorithm
,”
Int. J. Phys. Sci.
,
6
(
20
), pp.
4749
4759
.10.5897/IJPS11.514
32.
Buyruk
,
E.
,
Karabulut
,
K.
, and
Karabulut
,
Ö. O.
,
2013
, “
Three-Dimensional Numerical Investigation of Heat Transfer for Plate Fin Heat Exchangers
,”
Heat Mass Transfer
,
49
(
6
), pp.
817
826
.10.1007/s00231-013-1129-8
33.
Khalaji
,
M. N.
,
Kotcioglu
,
I.
,
Caliskan
,
S.
, and
Cansiz
,
A.
,
2019
, “
The Second Law Analysis of Thermodynamics for the Plate–Fin Surface Performance in a Cross Flow Heat Exchanger
,”
ASME J. Heat Transfer-Trans. ASME
,
141
(
1
), p.
11801
.10.1115/1.4041498
34.
Sedef
,
A. Y.
, and
Bilen
,
K.
,
2018
, “
The Effect of Plate-Fin Types on the Thermal-Hydraulic and Second Law Performances of a Vehicle Intercooler
,”
Int. J. Exergy
,
27
(
3
), pp.
287
310
.10.1504/IJEX.2018.095404
35.
Kundu
,
B.
,
2007
, “
Performance and Optimization of Flat Plate Fins of Different Geometry on a Round Tube: A Comparative Investigation
,”
ASME J. Heat Transfer-Trans. ASME
,
129
(
7
), pp. 9
17
926
.10.1115/1.2717255
36.
Ledezma
,
G.
,
Morega
,
A. M.
, and
Bejan
,
A.
,
1996
, “
Optimal Spacing Between Pin Fins With Impinging Flow
,”
ASME J. Heat Transfer-Trans. ASME
,
118
(
3
), pp. 570–577.10.1115/1.2822670
37.
Karvinen
,
R.
, and
Karvinen
,
T.
,
2012
, “
Optimum Geometry of Plate Fins
,”
ASME J. Heat Transfer-Trans. ASME
,
134
(
8
), p.
081801
10.1115/1.4006163.
38.
Peng
,
H.
,
Ling
,
X.
, and
Li
,
J.
,
2014
, “
Performance Investigation of an Innovative Offset Strip Fin Arrays in Compact Heat Exchangers
,”
Energy Convers. Manage.
,
80
, pp.
287
297
.10.1016/j.enconman.2014.01.050
39.
Khoshvaght-Aliabadi
,
M.
,
Hormozi
,
F.
, and
Zamzamian
,
A.
,
2014
, “
Role of Channel Shape on Performance of Plate-Fin Heat Exchangers: Experimental Assessment
,”
Int. J. Therm. Sci.
,
79
, pp.
183
193
.10.1016/j.ijthermalsci.2014.01.004
40.
Muqeem
,
M.
, and
Kumar
,
D. M.
,
2013
, “
Design of an Intercooler of a Turbocharger Unit to Enhance the Volumetric Efficiency of Diesel Engine
,”
Int. J. Mech. Eng. Technol. (IJMET)
,
4
(
3
), pp.
1
10
.https://scholar.google.com/scholar?hl=en&as_sdt=0,5&cluster=6523498548145254696
41.
Muqeem
,
M.
,
2012
, “
Turbocharging With Air Conditioner Assisted Intercooler
,”
J. Mech. Civ. Eng.
,
2
(
3
), pp.
38
44
.10.9790/1684-0233844
42.
Picon-Nuñez
,
M.
,
Polley
,
G. T.
,
Torres-Reyes
,
E.
, and
Gallegos-Muñoz
,
A.
,
1999
, “
Surface Selection and Design of Plate–Fin Heat Exchangers
,”
Appl. Therm. Eng.
,
19
(
9
), pp.
917
931
.10.1016/S1359-4311(98)00098-2
43.
Dewatwal
,
J.
,
2009
,
Design of Compact Plate Fine Heat Exchanger
,
Bachelor of Technology, Mechanical Engineering, National Institute of Technology
,
Rourkela, India
.
44.
Quoc
,
C. D.
,
Dinh
,
T. L.
, and
Trong
,
T. D.
,
2018
, “
Research on Heat Exchanger Between Water With Air in an Intercooler Based on CFD
,”
4th International Conference on Green Technology and Sustainable Development
,
IEEE
, Danang city, Vietnam, pp.
374
378
.
45.
Sen
,
Y.
, and
Ermis
,
K.
,
2015
, “
Thermal Analysis of Turbocharger and Intercooler in Diesel Engine
,”
ISITES2015, Universidad Politecnica de Valencia
Valencia, Spain, p.
11
.
46.
Wu
,
H.
,
Dai
,
X.
, and
Zhang
,
Y.
,
2015
, “
Research of Intercooler Heat Transfer Based on CFD
,”
MATEC Web Conferences
, Vol.
22
, Xiamen, China, p.
03024
.10.1051/matecconf/20152203024
47.
Çengel
,
Y.
, and
Ghajar
,
A.
,
2020
,
Heat and Mass Transfer: Fundamentals and Applications
,
McGraw-Hill Education
,
New York City, NY
.
48.
ANSYS
,
2017
,
ANSYS Fluent User's Guide
,
ANSYS, Inc. and ANSYS Europe, Ltd
., USA.
49.
Stephenson
,
D. G.
, and
Mitalas
,
G.
,
1971
, “
Calculation of Heat Conduction Transfer Functions for Multi-Layers Slabs
,”
ASHRAE Trans.
,
77
(
2
), pp.
117
126
.https://nrc-publications.canada.ca/fra/voir/td/?id=1aca4130-1c7d-419f-a257-fb30f40e67eb
50.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2011
,
Introduction to Heat Transfer
,
Wiley
, Hoboken, NJ.
51.
Zhang
,
Q.
,
Qin
,
S.
, and
Ma
,
R.
,
2016
, “
Simulation and Experimental Investigation of the Wavy Fin-and-Tube Intercooler
,”
Case Stud. Therm. Eng.
,
8
, pp.
32
40
.10.1016/j.csite.2016.04.003
You do not currently have access to this content.