Abstract

Catastrophic effects of global warming and environmental pollution are becoming more evident each day, and reduction in fossil fuel consumption is an urgent need. Thus, electric vehicles powered by sustainable energy sources are becoming a major interest. However, there are some challenges such as safety, limited range, long charging times, and battery life which are inhibitory to the adaptation of them. One of the biggest reasons for these challenges is the relationship between battery degradation and temperature which can be eliminated if batteries can be kept at the optimum temperature range. Here, the effects of three distinct (natural convection, forced convection, and tab cooling) methodology were experimentally compared at both the cell and module levels (six serial 7.5 Ah Kokam pouch cells, 1P6S) for thermal management of lithium-ion cells. The experiments were conducted at a discharge rate of 3C with ambient temperatures of 24 °C and 29 °C. The cell-level test results show that the tab cooling yields 32.5% better thermal uniformity in comparison to the other techniques. Furthermore, tab cooling yields better temperature uniformity with and without air convection as the hot spots occurring near the tabs is eliminated. For the module level, the forced air convection method stands out as the best option with a 4.3% temperature deviation between cells and maximum cell temperature of 39 °C. Overall, the results show that a hybrid approach with tab cooling would be beneficial in terms of temperature homogeneity especially in high capacity electric vehicle battery cells.

References

1.
Guterres
,
A.
,
2022
, “
Carbon Neutrality by 2050: The World's Most Urgent Mission
,” United Nations, New York, accessed Mar. 18, 2022, https://dppa.un.org/en/carbon-neutrality-2050-worlds-most-urgent-mission-op-ed-article-un-secretary-general-antonio
2.
Wu
,
W.
,
Wang
,
S.
,
Wu
,
W.
,
Chen
,
K.
,
Hong
,
S.
, and
Lai
,
Y.
,
2019
, “
A Critical Review of Battery Thermal Performance and Liquid Based Battery Thermal Management
,”
Energy Convers. Manag.
,
182
, pp.
262
281
.10.1016/j.enconman.2018.12.051
3.
Jaguemont
,
J.
,
Boulon
,
L.
, and
Dubé
,
Y.
,
2016
, “
A Comprehensive Review of Lithium-Ion Batteries Used in Hybrid and Electric Vehicles at Cold Temperatures
,”
Appl. Energy
,
164
, pp.
99
114
.10.1016/j.apenergy.2015.11.034
4.
Kim
,
J.
,
Oh
,
J.
, and
Lee
,
H.
,
2019
, “
Review on Battery Thermal Management System for Electric Vehicles
,”
Appl. Therm. Eng.
,
149
, pp.
192
212
.10.1016/j.applthermaleng.2018.12.020
5.
Sasaki
,
T.
,
Ukyo
,
Y.
, and
Novák
,
P.
,
2013
, “
Memory Effect in a Lithium-Ion Battery
,”
Nature Mater.
, 12, pp.
569
575
.10.1038/nmat3623
6.
Zhong
,
S.
,
Yuan
,
B.
,
Guang
,
Z.
,
Chen
,
D.
,
Li
,
Q.
,
Dong
,
L.
,
Ji
,
Y.
,
Dong
,
Y.
,
Han
,
J.
, and
He
,
W.
,
2021
, “
Recent Progress in Thin Separators for Upgraded Lithium Ion Batteries
,”
Energy Storage Mater.
,
41
, pp.
805
841
.10.1016/j.ensm.2021.07.028
7.
Tete
,
P. R.
,
Gupta
,
M. M.
, and
Joshi
,
S. S.
,
2021
, “
Developments in Battery Thermal Management Systems for Electric Vehicles: A Technical Review
,”
J. Energy Storage
,
35
, p.
102255
.10.1016/j.est.2021.102255
8.
Pesaran
,
A.
,
Santhanagopalan
,
S.
, and
Kim
,
G.-H.
,
2013
, “
Addressing the Impact of Temperature Extremes on Large Format Li-Ion Batteries for Vehicle Applications
,”
30th International Battery Seminar
, Ft. Lauderdale, FL, Mar. 11–14, Report No. NREL/PR-5400-58145.
9.
Na
,
X.
,
Kang
,
H.
,
Wang
,
T.
, and
Wang
,
Y.
,
2018
, “
Reverse Layered Air Flow for Li-Ion Battery Thermal Management
,”
Appl. Therm. Eng.
,
143
, pp.
257
262
.10.1016/j.applthermaleng.2018.07.080
10.
Sun
,
P.
,
Bisschop
,
R.
,
Niu
,
H.
, and
Huang
,
X.
,
2020
, “
A Review of Battery Fires in Electric Vehicles
,”
Fire Technol.
,
56
(
4
), pp.
1361
1410
.10.1007/s10694-019-00944-3
11.
Balakrishnan
,
P. G.
,
Ramesh
,
R.
, and
Prem Kumar
,
T.
,
2006
, “
Safety Mechanisms in Lithium-Ion Batteries
,”
J. Power Sources
,
155
(
2
), pp.
401
414
.10.1016/j.jpowsour.2005.12.002
12.
Feng
,
X.
,
Zheng
,
S.
,
Ren
,
D.
,
He
,
X.
,
Wang
,
L.
,
Cui
,
H.
,
Liu
,
X.
,
Jin
,
C.
,
Zhang
,
F.
,
Xu
,
C.
,
Hsu
,
H.
,
Gao
,
S.
,
Chen
,
T.
,
Li
,
Y.
,
Wang
,
T.
,
Wang
,
H.
,
Li
,
M.
, and
Ouyang
,
M.
,
2019
, “
Investigating the Thermal Runaway Mechanisms of Lithium-Ion Batteries Based on Thermal Analysis Database
,”
Appl. Energy
,
246
, pp.
53
64
.10.1016/j.apenergy.2019.04.009
13.
Federal Aviation Authority,
2021
, “
Events With Smoke, Fire, Extreme Heat or Explosion Involving Lithium Batteries Date Device Carrier Aircraft Type
,” Federal Aviation Authority, Washington, DC, accessed Mar. 18, 2022, https://www.faa.gov/hazmat/resources/lithium_batteries/media/Battery_incident_chart.pdf
14.
Pan
,
S.
,
Ji
,
C.
,
Wang
,
S.
, and
Wang
,
B.
,
2020
, “
Study on the Performance of Parallel Air-Cooled Structure and Optimized Design for Lithium-Ion Battery Module
,”
Fire Technol.
,
56
(
6
), pp.
2623
2647
.10.1007/s10694-020-01020-x
15.
Rao
,
Z.
, and
Wang
,
S.
,
2011
, “
A Review of Power Battery Thermal Energy Management
,”
Renewable Sustainable Energy Rev.
,
15
(
9
), pp.
4554
4571
.10.1016/j.rser.2011.07.096
16.
Pesaran
,
A. A.
,
2002
, “
Battery Thermal Models for Hybrid Vehicle Simulations
,”
J. Power Sources
,
110
(
2
), pp.
377
382
.10.1016/S0378-7753(02)00200-8
17.
Chen
,
K.
,
Wu
,
W.
,
Yuan
,
F.
,
Chen
,
L.
, and
Wang
,
S.
,
2019
, “
Cooling Efficiency Improvement of Air-Cooled Battery Thermal Management System Through Designing the Flow Pattern
,”
Energy
,
167
, pp.
781
790
.10.1016/j.energy.2018.11.011
18.
Wang
,
T.
,
Tseng
,
K. J.
, and
Zhao
,
J.
,
2015
, “
Development of Efficient Air-Cooling Strategies for Lithium-Ion Battery Module Based on Empirical Heat Source Model
,”
Appl. Therm. Eng.
,
90
, pp.
521
529
.10.1016/j.applthermaleng.2015.07.033
19.
Gocmen
,
S.
,
Gungor
,
S.
, and
Cetkin
,
E.
,
2020
, “
Thermal Management of Electric Vehicle Battery Cells With Homogeneous Coolant and Temperature Distribution
,”
J. Appl. Phys.
,
127
(
23
), p.
234902
.10.1063/5.0004453
20.
Suresh Patil
,
M.
,
Seo
,
J. H.
, and
Lee
,
M. Y.
,
2021
, “
A Novel Dielectric Fluid Immersion Cooling Technology for Li-Ion Battery Thermal Management
,”
Energy Convers. Manag.
,
229
, p.
113715
.10.1016/j.enconman.2020.113715
21.
Xu
,
X.
,
Tong
,
G.
, and
Li
,
R.
,
2020
, “
Numerical Study and Optimizing on Cold Plate Splitter for Lithium Battery Thermal Management System
,”
Appl. Therm. Eng.
,
167
, p.
114787
.10.1016/j.applthermaleng.2019.114787
22.
Lin
,
J.
,
Liu
,
X.
,
Li
,
S.
,
Zhang
,
C.
, and
Yang
,
S.
,
2021
, “
A Review on Recent Progress, Challenges and Perspective of Battery Thermal Management System
,”
Int. J. Heat Mass Transfer
,
167
, p.
120834
.10.1016/j.ijheatmasstransfer.2020.120834
23.
Chen
,
F.
,
Huang
,
R.
,
Wang
,
C.
,
Yu
,
X.
,
Liu
,
H.
,
Wu
,
Q.
,
Qian
,
K.
, and
Bhagat
,
R.
,
2020
, “
Air and PCM Cooling for Battery Thermal Management Considering Battery Cycle Life
,”
Appl. Therm. Eng.
,
173
, p.
115154
.10.1016/j.applthermaleng.2020.115154
24.
Chen
,
J.
,
Kang
,
S.
,
Jiaqiang
,
E.
,
Huang
,
Z.
,
Wei
,
K.
,
Zhang
,
B.
,
Zhu
,
H.
,
Deng
,
Y.
,
Zhang
,
F.
, and
Liao
,
G.
,
2019
, “
Effects of Different Phase Change Material Thermal Management Strategies on the Cooling Performance of the Power Lithium Ion Batteries: A Review
,”
J. Power Sources
,
442
, p.
227228
.10.1016/j.jpowsour.2019.227228
25.
Choudhari
,
V. G.
,
Dhoble
,
A. S.
,
Panchal
,
S.
,
Fowler
,
M.
, and
Fraser
,
R.
,
2021
, “
Numerical Investigation on Thermal Behaviour of 5 × 5 Cell Configured Battery Pack Using Phase Change Material and Fin Structure Layout
,”
J. Energy Storage
,
43
, p.
103234
.10.1016/j.est.2021.103234
26.
Chidambaranathan
,
B.
,
Vijayaram
,
M.
,
Suriya
,
V.
,
Sai Ganesh
,
R.
, and
Soundarraj
,
S.
,
2020
, “
A Review on Thermal Issues in Li-Ion Battery and Recent Advancements in Battery Thermal Management System
,”
Mater. Today Proc.
,
33
, pp.
116
128
.
27.
Xun
,
J.
,
Liu
,
R.
, and
Jiao
,
K.
,
2013
, “
Numerical and Analytical Modeling of Lithium Ion Battery Thermal Behaviors With Different Cooling Designs
,”
J. Power Sources
,
233
, pp.
47
61
.10.1016/j.jpowsour.2013.01.095
28.
Chen
,
D.
,
Jiang
,
J.
,
Kim
,
G.-H.
,
Yang
,
C.
, and
Pesaran
,
A.
,
2016
, “
Comparison of Different Cooling Methods for Lithium Ion Battery Cells
,”
Appl. Therm. Eng.
,
94
, pp.
846
854
.10.1016/j.applthermaleng.2015.10.015
29.
Qin
,
P.
,
Sun
,
J.
,
Yang
,
X.
, and
Wang
,
Q.
,
2021
, “
Battery Thermal Management System Based on the Forced-Air Convection: A Review
,”
eTransportation
,
7
, p.
100097
.10.1016/j.etran.2020.100097
30.
Yue
,
Q. L.
,
He
,
C. X.
,
Wu
,
M. C.
, and
Zhao
,
T. S.
,
2021
, “
Advances in Thermal Management Systems for Next-Generation Power Batteries
,”
Int. J. Heat Mass Transfer
,
181
, p.
121853
.10.1016/j.ijheatmasstransfer.2021.121853
31.
Olabi
,
A. G.
,
Maghrabie
,
H. M.
,
Adhari
,
O. H. K.
,
Sayed
,
E. T.
,
Yousef
,
B. A. A.
,
Salameh
,
T.
,
Kamil
,
M.
, and
Abdelkareem
,
M. A.
,
2022
, “
Battery Thermal Management Systems: Recent Progress and Challenges
,”
Int. J. Thermofluids
,
15
, p.
100171
.10.1016/j.ijft.2022.100171
32.
Jaguemont
,
J.
,
Omar
,
N.
,
Van den Bossche
,
P.
, and
Mierlo
,
J.
,
2018
, “
Phase-Change Materials (PCM) for Automotive Applications: A Review
,”
Appl. Therm. Eng.
,
132
, pp.
308
320
.10.1016/j.applthermaleng.2017.12.097
33.
Zhang
,
J.
,
Li
,
X.
,
Zhang
,
G.
,
Wang
,
Y.
,
Guo
,
J.
,
Wang
,
Y.
,
Huang
,
Q.
,
Xiao
,
C.
, and
Zhong
,
Z.
,
2020
, “
Characterization and Experimental Investigation of Aluminum Nitride-Based Composite Phase Change Materials for Battery Thermal Management
,”
Energy Convers. Manag.
,
204
, p.
112319
.10.1016/j.enconman.2019.112319
34.
Li
,
H.
,
Xiao
,
X.
,
Wang
,
Y.
,
Lian
,
C.
,
Li
,
Q.
, and
Wang
,
Z.
,
2020
, “
Performance Investigation of a Battery Thermal Management System With Microencapsulated Phase Change Material Suspension
,”
Appl. Therm. Eng.
,
180
, p.
115795
.10.1016/j.applthermaleng.2020.115795
35.
Al-Zareer
,
M.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2018
, “
A Review of Novel Thermal Management Systems for Batteries
,”
Int. J. Energy Res.
,
42
(
10
), pp.
3182
3205
.10.1002/er.4095
36.
Hunt
,
I. A.
,
Zhao
,
Y.
,
Patel
,
Y.
, and
Offer
,
J.
,
2016
, “
Surface Cooling Causes Accelerated Degradation Compared to Tab Cooling for Lithium-Ion Pouch Cells
,”
J. Electrochem. Soc.
,
163
(
9
), pp.
A1846
A1852
.10.1149/2.0361609jes
37.
Zhao
,
Y.
,
Patel
,
Y.
,
Zhang
,
T.
, and
Offer
,
G. J.
,
2018
, “
Modeling the Effects of Thermal Gradients Induced by Tab and Surface Cooling on Lithium Ion Cell Performance
,”
J. Electrochem. Soc.
,
165
(
13
), pp.
A3169
A3178
.10.1149/2.0901813jes
38.
Birkl
,
C. R.
,
Roberts
,
M. R.
,
McTurk
,
E.
,
Bruce
,
P. G.
, and
Howey
,
D. A.
,
2017
, “
Degradation Diagnostics for Lithium Ion Cells
,”
J. Power Sources
,
341
, pp.
373
386
.10.1016/j.jpowsour.2016.12.011
39.
De Gennaro
,
M.
,
Paffumi
,
E.
,
Martini
,
G.
,
Giallonardo
,
A.
,
Pedroso
,
S.
, and
Loiselle-Lapointe
,
A.
,
2020
, “
A Case Study to Predict the Capacity Fade of the Battery of Electrified Vehicles in Real-World Use Conditions
,”
Case Stud. Transp. Policy
,
8
(
2
), pp.
517
534
.10.1016/j.cstp.2019.11.005
40.
Argue
,
C.
,
2020
, “
What Can 6,000 Electric Vehicles Tell us About EV Battery Health?
,” Geotab, accessed Nov. 26, 2022, https://www.geotab.com/blog/ev-battery-health/
41.
Wang
,
J.
,
Purewal
,
J.
,
Liu
,
P.
,
Hicks-Garner
,
J.
,
Soukazian
,
S.
,
Sherman
,
E.
,
Sorenson
,
A.
,
Vu
,
L.
,
Tataria
,
H.
, and
Verbrugge
,
M. W.
,
2014
, “
Degradation of Lithium Ion Batteries Employing Graphite Negatives and Nickel-Cobalt-Manganese Oxide + Spinel Manganese Oxide Positives: Part 1, Aging Mechanisms and Life Estimation
,”
J. Power Sources
,
269
, pp.
937
948
.10.1016/j.jpowsour.2014.07.030
42.
Akkaldevi
,
C.
,
Chitta
,
S. D.
,
Jaidi
,
J.
,
Panchal
,
S.
,
Fowler
,
M.
, and
Fraser
,
R.
,
2021
, “
Coupled Electrochemical-Thermal Simulations and Validation of Minichannel Cold-Plate Water-Cooled Prismatic 20 Ah LiFePO4 Battery
,”
Electrochem
,
2
(
4
), pp.
643
663
.10.3390/electrochem2040040
43.
Purohit
,
K.
,
Srivastava
,
S.
,
Nookala
,
V.
,
Joshi
,
V.
,
Shah
,
P.
,
Sekhar
,
R.
,
Panchal
,
S.
,
Fowler
,
M.
,
Fraser
,
R.
,
Tran
,
M.-K.
, and
Shum
,
C.
,
2021
, “
Soft Sensors for State of Charge, State of Energy, and Power Loss in Formula Student Electric Vehicle
,”
Appl. Syst. Innov.
,
4
(
4
), p.
78
.10.3390/asi4040078
44.
Gungor
,
S.
,
Cetkin
,
E.
, and
Lorente
,
S.
,
2022
, “
Canopy-to-Canopy Liquid Cooling for the Thermal Management of Lithium-Ion Batteries, a Constructal Approach
,”
Int. J. Heat Mass Transfer
,
182
, p.
121918
.10.1016/j.ijheatmasstransfer.2021.121918
45.
Wang
,
H.
,
Li
,
H.
,
Ji
,
Z.
,
Yang
,
Z.
,
Jiang
,
C.
, and
Lin
,
H.
,
2022
, “
Cooling the Electrode Tabs With Air to Manage the Heat Transferred Through the Collectors in Traction Battery
,”
J. Energy Storage
,
48
, p.
103982
.10.1016/j.est.2022.103982
46.
Xie
,
Y.
,
He
,
X.
,
Li
,
W.
,
Zhang
,
Y.
,
Dan
,
D.
,
Lee
,
K.
, and
Liu
,
J.
,
2020
, “
A Novel Electro-Thermal Coupled Model of Lithium-Ion Pouch Battery Covering Heat Generation Distribution and Tab Thermal Behaviours
,”
Int. J. Energy Res.
,
44
(
14
), pp.
11725
11741
.10.1002/er.5803
47.
Lazrak
,
A.
,
Fourmigué
,
J.-F.
, and
Robin
,
J.-F.
,
2018
, “
An Innovative Practical Battery Thermal Management System Based on Phase Change Materials: Numerical and Experimental Investigations
,”
Appl. Therm. Eng.
,
128
, pp.
20
32
.10.1016/j.applthermaleng.2017.08.172
48.
Bolsinger
,
C.
, and
Birke
,
K. P.
,
2019
, “
Effect of Different Cooling Configurations on Thermal Gradients Inside Cylindrical Battery Cells
,”
J. Energy Storage
,
21
, pp.
222
230
.10.1016/j.est.2018.11.030
49.
Heimes
,
H.
,
Kampker
,
A.
,
Mohsseni
,
A.
,
Maltoni
,
F.
, and
Biederbeck
,
J.
,
2019
, “
Cell Tab Cooling System for Battery Life Extension
,” 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
),
Las Vegas, NV
, May 28–31, pp.
1125
1133
.10.1109/ITHERM.2019.8757444
50.
Gocmen
,
S.
, and
Cetkin
,
E.
,
2022
, “
Emergence of Elevated Battery Positioning in Air Cooled Battery Packs for Temperature Uniformity in Ultra-Fast Dis/Charging Applications
,”
J. Energy Storage
,
45
, p.
103516
.10.1016/j.est.2021.103516
51.
Klein
,
M.
,
Tong
,
S.
, and
Park
,
J. W.
,
2016
, “
In-Plane Nonuniform Temperature Effects on the Performance of a Large-Format Lithium-Ion Pouch Cell
,”
Appl. Energy
,
165
, pp.
639
647
.10.1016/j.apenergy.2015.11.090
52.
Song
,
W.
,
Chen
,
M.
,
Bai
,
F.
,
Lin
,
S.
,
Chen
,
Y.
, and
Feng
,
Z.
,
2018
, “
Non-Uniform Effect on the Thermal/Aging Performance of Lithium-Ion Pouch Battery
,”
Appl. Therm. Eng.
,
128
, pp.
1165
1174
.10.1016/j.applthermaleng.2017.09.090
53.
Wang
,
Y. F.
, and
Wu
,
J. T.
,
2019
, “
Performance Improvement of Thermal Management System of Lithium-Ion Battery Module on Purely Electric AUVs
,”
Appl. Therm. Eng.
,
146
, pp.
74
84
.10.1016/j.applthermaleng.2018.09.108
54.
Bazinski
,
S. J.
, and
Wang
,
X.
,
2014
, “
Thermal Effect of Cooling the Cathode Grid Tabs of a Lithium-Ion Pouch Cell
,”
J. Electrochem. Soc.
,
161
(
14
), pp.
A2168
A2174
.10.1149/2.0731414jes
55.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2007
,
Fundamentals of Heat and Mass Transfer
,
John Wiley and Sons
,
New York
.
56.
Figliola
,
R. S.
, and
Beasley
,
D. E.
,
2012
, “
Theory and Design for Mechanical Measurements
,”
Seventh Ed., Wiley, New York
.
57.
Buchman
,
I.
,
2001
,
Batteries in a Portable World: A Handbook on Rechargeable Batteries for Non-Engineers
,
Cadex Electronics
, Richmond, BC, Canada.
58.
Gao
,
L.
,
Liu
,
S.
, and
Dougal
,
R. A.
,
2002
, “
Dynamic Lithium-Ion Battery Model for System Simulation
,”
IEEE Trans. Compon. Packag. Technol.
,
25
(
3
), pp.
495
505
.
59.
Hausmann
,
A.
, and
Depcik
,
C.
,
2013
, “
Expanding the Peukert Equation for Battery Capacity Modeling Through Inclusion of a Temperature Dependency
,”
J. Power Sources
,
235
, pp.
148
158
.10.1016/j.jpowsour.2013.01.174
You do not currently have access to this content.