Abstract

The ongoing development of modern electronic systems leads to smaller, more powerful devices that are expected to operate in complex environments. Due to this, advanced thermal management technologies are required to meet the growing demand, especially in space where two-phase thermal systems are limited by the absence of gravity. Electrohydrodynamic (EHD) and dielectrophoretic (DEP) forces can be used to sustain stable liquid film flow boiling in the absence of gravity, which is otherwise impractical due to the lack of a required buoyancy force to initiate bubble departure. EHD is a phenomenon that is represented by the interaction between electric fields and fluid flow. The DEP force is characterized by its ability to act on liquid/vapor interfaces due to a high gradient of electrical permittivity. This study investigates the heat transfer characteristics of EHD conduction pumping driven liquid film flow boiling coupled with DEP vapor extraction during a microgravity parabolic flight and on the ground. The results of this study show that EHD and DEP raise the critical heat flux, lower heater surface temperature, and successfully sustain boiling in both microgravity and on the ground with low power consumption. Additionally, the heat transfer data captured in terrestrial, microgravity, and 1.8 g conditions compare well, indicating that combining these mechanisms can provide thermal enhancement independent of gravity. This study provides fundamental understanding of electrically driven liquid film flow boiling in the presence of phase change, paving the way toward developing next-generation heat transport devices for space and terrestrial applications.

References

1.
Melcher
,
J.
,
1981
,
Continuum Electromechanics
,
MIT Press
,
Cambridge, MA
.
2.
Yagoobi
,
J.
,
2005
, “
Electrohydrodynamic Pumping of Dielectric Liquids
,”
J. Electrostatics
,
63
, pp.
861
869
.10.1016/j.elstat.2005.03.047
3.
Atten
,
P.
, and
Seyed-Yagoobi
,
J.
,
2003
, “
Electrohydrodynamically Induced Dielectric Liquid Flow Through Pure Conduction in Point/Plane Geometry
,”
IEEE Trans. Dielectrics Electr. Insul.
,
10
(
1
), pp.
27
36
.10.1109/TDEI.2003.1176555
4.
Patel
,
V.
, and
Seyed-Yagoobi
,
J.
,
2014
, “
Recent Experimental Advances in Electrohydrodynamic Conduction Pumping Research
,”
IEEE Industry Application Society Annual Meeting
, Vancouver, BC, Canada, Oct. 5–9, pp.
1
10
.10.1109/IAS.2014.6978363
5.
Vázquez
,
P. A.
,
Talmor
,
M.
,
Seyed-Yagoobi
,
J.
,
Traoré
,
P.
, and
Yazdani
,
M.
,
2019
, “
In-Depth Description of Electrohydrodynamic Conduction Pumping of Dielectric Liquids: Physical Model and Regime Analysis
,”
Phys. Fluids
,
31
(
11
), p.
113601
.10.1063/1.5121164
6.
Yazdani
,
M.
, and
Seyed-Yagoobi
,
J.
,
2009
, “
Electrically Induced Dielectric Liquid Film Flow Based on Electric Conduction Phenomenon
,”
IEEE Trans. Dielectrics Electr. Insul.
,
16
(
3
), pp.
768
777
.10.1109/TDEI.2009.5128517
7.
Talmor
,
M.
, and
Seyed-Yagoobi
,
J.
,
2021
, “
Numerical Study of Micro-Scale EHD Conduction Pumping: The Effect of Pump Orientation and Flow Inertia on Heterocharge Layer Morphology and Flow Distribution Control
,”
J. Electrostatics
,
111
, p.
103548
.10.1016/j.elstat.2020.103548
8.
Pearson
,
M.
, and
Seyed-Yagoobi
,
J.
,
2013
, “
Electrohydrodynamic Conduction Driven Single- and Two-Phase Flow in Microchannels With Heat Transfer
,”
ASME J. Heat Transfer-Trans. ASME
,
135
(
10
), p.
101701
.10.1115/1.4007617
9.
Talmor
,
M.
,
Louste
,
C.
, and
Seyed-Yagoobi
,
J.
,
2018
, “
PIV Flow Field Measurements of Electrohydrodynamic Conduction Pumping
,”
Proc. of the 2018 Electrostatics Joint Conference Conf
, Boston, MA, June, pp.
1
15
.
10.
Louste
,
C.
,
Traoré
,
P.
,
Vazquez
,
P. A.
, and
Seyed Yagoobi
,
J.
,
2019
, “
PIV Flow Measurements of Conduction Pumping Flow Created by Nine Pairs of Asymmetric Surface Electrodes
,” 2019 IEEE 20th International Conference on Dielectric Liquids (
ICDL
), Rome, Italy, June 23–27, pp.
1
4
.10.1109/ICDL.2019.8796777
11.
Vázquez
,
P. A.
,
Seyed-Yagoobi
,
J.
,
Traoré
,
P.
, and
Louste
,
C.
,
2019
, “
EHD Pumping in Flexible Conic Nozzle
,”
IEEE 20th International Conference on Dielectric Liquids
(
ICDL
), Rome, Italy, June 23–27, pp.
1
4
.10.1109/ICDL.2019.8796552
12.
O'Connor
,
N.
,
Castaneda
,
A.
, and
Yagoobi
,
J.
,
2020
, “
Experimental Study of Flexible Electrohydrodynamic Conduction Pumping for Electronics Cooling
,”
J. Electron Packag.
,
142
(
4
), p.
041105
.10.1115/1.4047459
13.
Ogata
,
J.
, and
Yabe
,
A.
,
1993
, “
Augmentation of Boiling Heat Transfer by Utilizing the EHD Effect—EHD Behaviour of Boiling Bubbles and Heat Transfer Characteristics
,”
Int. J. Heat Mass Transfer
,
36
(
3
), pp.
783
791
.10.1016/0017-9310(93)80054-X
14.
Seyed-Yagoobi
,
J.
,
Geppert
,
C. A.
, and
Geppert
,
L. M.
,
1996
, “
Electrohydrodynamically Enhanced Heat Transfer in Pool Boiling
,”
ASME J. Heat Transfer-Trans. ASME
,
118
(
1
), pp.
233
237
.10.1115/1.2824048
15.
Seyed-Yagoob
,
J.
,
Hardesty
,
J. T.
,
Raghupathi
,
P.
, and
Bryan
,
J. E.
,
1997
, “
Experimental Study of Electrohydrodynamically Augmented Pool Boiling Heat Transfer on Smooth and Enhanced Tubes
,”
J. Electrost.
,
40–41
, pp.
597
602
.10.1016/S0304-3886(97)00109-5
16.
Darabi
,
J.
,
Ohadi
,
M. M.
, and
Dessiatoun
,
S. V.
,
2000
, “
Augmentation of Thin Falling-Film Evaporation on Horizontal Tubes Using an Applied Electric Field
,”
ASME J. Heat Transfer-Trans. ASME
,
122
(
2
), pp.
391
398
.10.1115/1.521478
17.
Kano
,
I.
, and
Takahashi
,
Y.
,
2013
, “
Effect of Electric Field Generated by Microsized Electrode on Pool Boiling
,”
IEEE Trans. Ind. Appl
,.,
49
(
6
), pp.
2382
2387
.10.1109/TIA.2013.2263213
18.
Kano
,
I.
,
Higuchi
,
Y.
, and
Chika
,
T.
,
2013
, “
Development of Boiling Type Cooling System Using Electrohydrodynamics Effect
,”
ASME J. Heat Transfer-Trans. ASME
,
135
(
9
), p.
091301
.10.1115/1.4024390
19.
Garivalis
,
A. I.
,
Manfredini
,
G.
,
Saccone
,
G.
,
Di Marco
,
P.
,
Kossolapov
,
A.
, and
Bucci
,
M.
,
2021
, “
Critical Heat Flux Enhancement in Microgravity Conditions Coupling Microstructured Surfaces and Electrostatic Field
,”
NPJ Microgravity
,
7
(
1
), p.
37
.10.1038/s41526-021-00167-3
20.
Patel
,
V. K.
,
Yagoobi
,
J.
,
Robinson
,
F.
, and
Didion
,
J. R.
,
2016
, “
Effect of Gravity on Electrohydrodynamic Conduction Driven Liquid Film Flow Boiling
,”
AIAA J. Thermophys. Heat Transfer
,
30
(
2
), pp.
429
437
.10.2514/1.T4696
21.
Schweizer
,
N.
, and
Stephan
,
P.
,
2009
, “
Experimental Study of Bubble Behavior and Local Heat Flux in Pool Boiling Under Variable Gravitational Conditions
,”
Multiphase Sci. Technol.
,
21
(
4
), pp.
329
350
.10.1615/MultScienTechn.v21.i4.40
22.
Di Marco
,
P.
, and
Grassi
,
W.
,
2009
, “
Effect of Force Fields on Pool Boiling Flow Patterns in Normal and Reduced Gravity
,”
Heat Mass Transfer
,
45
(
7
), pp.
959
966
.10.1007/s00231-007-0328-6
23.
Henry
,
C. D.
, and
Kim
,
J.
,
2004
, “
Heater Size, Subcooling, and Gravity Effects on Pool Boiling Heat Transfer
,”
Int. J. Heat Fluid Flow
,
25
(
2
), pp.
262
273
.10.1016/j.ijheatfluidflow.2003.11.019
24.
Dhir
,
V. K.
,
Warrier
,
G. R.
,
Aktinol
,
E.
,
Chao
,
D.
,
Eggers
,
J.
,
Sheredy
,
W.
, and
Booth
,
W.
,
2012
, “
Nucleate Pool Boiling Experiments (NPBX) on the International Space Station
,”
Microgravity Sci. Technol.
,
24
(
5
), pp.
307
325
.10.1007/s12217-012-9315-8
25.
3M Novec 7100 Engineeering Fluid
,” 3M, accessed Sept. 15, 2022, https://multimedia.3m.com/mws/media/1613377O/3mtm-novectm-7100-engineered-fluid-technical-data-sheet.pdf
26.
Nassar
,
M.
,
Vázquez
,
P. A.
,
Chauris
,
N.
,
Daaboul
,
M.
,
Michel
,
A.
, and
Louste
,
C.
,
2020
, “
Experimental Models of the Variation of HFE-7100 and HFE-7000 Electric Properties With Temperature
,”
IEEE Trans. Ind. Appl.
,
56
(
4
), pp.
4193
4199
.10.1109/TIA.2020.2990367
27.
Patel
,
V. K.
, and
Seyed-Yagoobi
,
J.
,
2017
, “
Combined Dielectrophoretic and Electrohydrodynamic Conduction Pumping for Enhancement of Liquid Film Flow Boiling
,”
ASME J. Heat Transfer-Trans. ASME
,
139
(
6
), p.
061502
.10.1115/1.4035709
28.
Rohsenow
,
W. M.
,
1952
, “
Method of Correlating Heat-Transfer Data for Surface Boiling of Liquids
,”
ASME Trans.
,
74
(
6
), pp.
969
975
.10.1115/1.4015984
29.
Manetti
,
L. L.
,
Moita
,
A. S. O. H.
,
de Souza
,
R. R.
, and
Cardoso
,
E. M.
,
2020
, “
Effect of Copper Foam Thickness on Pool Boiling Heat Transfer of HFE-7100
,”
Int. J. Heat Mass Transfer
,
152
, p.
119547
.10.1016/j.ijheatmasstransfer.2020.119547
30.
Pohl
,
H. A.
,
1978
, ”
Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields
,
Cambridge University Press
,
Cambridge, UK
.
31.
Zuber
,
N.
,
1959
, “
Hydrodynamic Aspects of Boiling Heat Transfer
,”
U.S. AEC
,
Washington, DC
, Report No. AECU
-4439.
32.
Jones
,
T. B.
, and
Bliss
,
G. W.
,
1977
, “
Bubble Dielectrophoresis
,”
J. Appl. Phys.
,
48
(
4
), pp.
1412
1417
.10.1063/1.323806
You do not currently have access to this content.