Abstract

The intention of this paper is to present the numerical analysis of thermal performance and exergy transfer through high porosity metal foams filled partially in a horizontal pipe. The heater is embedded in the pipe's circumference and is assigned with known heat input. To enhance heat transfer, aluminum metal foam of pore density 10 with porosity 0.95 is inserted adjacent to the pipe's inner wall. To determine the optimal thickness of metal foam for enhancing its performance thermodynamically, metal foams with five different thicknesses (10, 20, 40, 60, and 80 mm) are examined in this research for a fluid velocity ranging from 0.7 to 7 m/s under forced convection heat transfer condition. The Darcy– Brinkman–Forchheimer and local thermal nonequilibrium (LTNE) models are used for forecasting the flow features and heat transfer through the metal foams, respectively. The numerical methodology implemented in this research is confirmed by comparing the present outcomes with the experimental outcomes accessible in the literature and found a fairly good agreement between them. The thermal performance is assessed in terms of heat transfer enhancement ratio and performance factor, and the thermodynamic performance is evaluated based on exergy analysis. In the exergy analysis, the parameters like mean exergy-based Nusselt number (Nue), merit function (MF), and nondimensional exergy destruction (I*) are considered for the evaluation. The result shows a better performance from partially filled metal foams than from completely filled metal foams.

References

1.
Yilmaz
,
M.
,
Sara
,
O. N.
, and
Karsli
,
S.
,
2001
, “
Performance Evaluation Criteria for Heat Exchangers Based on Second Law Analysis
,”
Exergy Int. J.
,
1
(
4
), pp.
278
294
.10.1016/S1164-0235(01)00034-6
2.
Kotresha
,
B.
,
Gnanasekaran
,
N.
, and
Balaji
,
C.
,
2019
, “
Numerical Simulations of Flow-Assisted Mixed Convection in a Vertical Channel Filled With High Porosity Metal Foams
,”
Heat Transfer Eng.
,
41
(
8
), pp.
739
750
.10.1080/01457632.2018.1564208
3.
Kamath
,
P. M.
,
Balaji
,
C.
, and
Venkateshan
,
S. P.
,
2011
, “
Experimental Investigation of Flow Assisted Mixed Convection in High Porosity Foams in Vertical Channels
,”
Int. J. Heat Mass Transfer
,
54
(
25–26
), pp.
5231
5241
.10.1016/j.ijheatmasstransfer.2011.08.020
4.
Kamath
,
P. M.
,
Balaji
,
C.
, and
Venkateshan
,
S. P.
,
2013
, “
Convection Heat Transfer From Aluminium and Copper Foams in a Vertical Channel—An Experimental Study
,”
Int. J. Therm. Sci.
,
64
, pp.
1
10
.10.1016/j.ijthermalsci.2012.08.015
5.
Kotresha
,
B.
, and
Gnanasekaran
,
N.
,
2018
, “
Effect of Thickness and Thermal Conductivity of Metal Foams Filled in a Vertical Channel—A Numerical Study
,”
Int. J. Numer. Methods Heat Fluid Flow
,
29
(
1
), pp.
184
203
.10.1108/HFF-11-2017-0465
6.
Lu
,
W.
,
Zhao
,
C. Y.
, and
Tassou
,
S. A.
,
2006
, “
Thermal Analysis on Metal-Foam Filled Heat Exchangers. Part I: Metal-Foam Filled Pipes
,”
Int. J. Heat Mass Transfer
,
49
(
15–16
), pp.
2751
2761
.10.1016/j.ijheatmasstransfer.2005.12.012
7.
Venugopal
,
G.
,
Balaji
,
C.
, and
Venkateshan
,
S. P.
,
2010
, “
Experimental Study of Mixed Convection Heat Transfer in a Vertical Duct Filled With Metallic Porous Structures
,”
Int. J. Therm. Sci.
,
49
(
2
), pp.
340
348
.10.1016/j.ijthermalsci.2009.07.018
8.
Venkateshwar
,
K.
,
Tasnim
,
S. H.
,
Simha
,
H.
, and
Mahmud
,
S.
,
2020
, “
Effect of Spatially Varying Morphologies of Metal Foams on Phase Change Process
,”
Therm. Sci. Eng. Prog.
,
19
, p.
100667
.10.1016/j.tsep.2020.100667
9.
Kumar
,
K. K.
,
Kotresha
,
B.
, and
Naik
,
K.
,
2022
, “
Effect of Spatial Porosity of Metal Foams on Heat Transfer Filled in a Vertical Channel
,”
Mater. Today Proc.
,
51
(
part 3
), pp.
1539
1547
.10.1016/j.matpr.2021.10.359
10.
Lin
,
W.
,
Xie
,
G.
,
Yuana
,
J.
, and
Sundén
,
B.
,
2015
, “
Comparison and Analysis of Heat Transfer in Aluminum Foam Using Local Thermal Equilibrium or Nonequilibrium Model
,”
Heat Transfer Eng.
,
37
(3-4), pp.
1
39
.10.1080/01457632.2015.1052682
11.
Mancin
,
S.
,
Zilio
,
C.
,
Diani
,
A.
, and
Rossetto
,
L.
,
2013
, “
Air Forced Convection Through Metal Foams: Experimental Results and Modeling
,”
Int. J. Heat Mass Transfer
,
62
, pp.
112
123
.10.1016/j.ijheatmasstransfer.2013.02.050
12.
Lu
,
W.
,
Zhang
,
T.
, and
Yang
,
M.
,
2016
, “
Analytical Solution of Forced Convective Heat Transfer in Parallel-Plate Channel Partially Filled With Metallic Foams
,”
Int. J. Heat Mass Transfer
,
100
, pp.
718
727
.10.1016/j.ijheatmasstransfer.2016.04.047
13.
Lu
,
W.
,
Zhang
,
T.
,
Yang
,
M.
, and
Wu
,
Y.
,
2017
, “
Analytical Solutions of Force Convective Heat Transfer in Plate Heat Exchangers Partially Filled With Metal Foams
,”
Int. J. Heat Mass Transfer
,
110
, pp.
476
481
.10.1016/j.ijheatmasstransfer.2017.02.087
14.
Kotresha
,
B.
, and
Gnanasekaran
,
N.
,
2018
, “
Investigation of Mixed Convection Heat Transfer Through Metal Foams Partially Filled in a Vertical Channel by Using Computational Fluid Dynamics
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
140
, p.
112501
.10.1115/1.4040614
15.
Kurtbaş
,
İ.
,
Celik
,
N.
, and
Dinçer
,
İ.
,
2010
, “
Exergy Transfer in a Porous Rectangular Channel
,”
Energy
,
35
(
1
), pp.
451
460
.10.1016/j.energy.2009.10.011
16.
Wu
,
S. Y.
,
Chen
,
Y.
,
Li
,
Y. R.
, and
Zeng
,
D. L.
,
2007
, “
Exergy Transfer Characteristics of Forced Convective Heat Transfer Through a Duct With Constant Wall Heat Flux
,”
Energy
,
32
(
5
), pp.
686
696
.10.1016/j.energy.2006.04.013
17.
Srinivasacharya
,
D.
, and
Bindu
,
K. H.
,
2016
, “
Entropy Generation of Micropolar Fluid Flow in an Inclined Porous Pipe With Convective Boundary Conditions
,”
Sadhana
,
42
(
5
), pp.
729
740
.10.1007/s12046-017-0639-3
18.
Tayari
,
A.
,
Brahim
,
A. B.
, and
Magherbi
,
M.
,
2015
, “
Second Law Analysis in Mixed Convection Through an Inclined Porous Channel
,”
Int. J. Thermophys.
,
36
(
10–11
), pp.
2881
2896
.10.1007/s10765-015-1925-0
19.
Garrity
,
P. T.
,
Klausner
,
J. F.
, and
Mei
,
R.
,
2010
, “
Performance of Aluminum and Carbon Foams for Air Side Heat Transfer Augmentation
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
132
, p.
121901
.10.1115/1.4002172
20.
Baragh
,
S.
,
Shokouhmand
,
H.
,
Ajarostaghi
,
S. S. M.
, and
Nikian
,
M.
,
2018
, “
An Experimental Investigation on Forced Convection Heat Transfer of Single Phase Flow in a Channel With Different Arrangements of Porous Media
,”
Int. J. Therm. Sci.
,
134
, pp.
370
379
.10.1016/j.ijthermalsci.2018.04.030
21.
Shokouhmand
,
H.
,
Jam
,
F.
, and
Salimpour
,
M. R.
,
2011
, “
The Effect of Porous Insert Position on the Enhanced Heat Transfer in Partially Filled Channels
,”
Int. Commun. Heat Mass Transfer
,
38
(
8
), pp.
1162
1167
.10.1016/j.icheatmasstransfer.2011.04.027
22.
Poulikakos
,
D.
, and
Kazmierczak
,
M.
,
1987
, “
Forced Convection in a Duct Partially Filled With a Porous Material
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
109
(
3
), pp.
653
662
.10.1115/1.3248138
23.
Mukherjee
,
P.
,
Biswas
,
G.
, and
Nag
,
P. K.
,
1987
, “
Second-Law Analysis of Heat Transfer in Swirling Flow Through a Cylindrical Duct
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
109
(
2
), pp.
308
313
.10.1115/1.3248081
24.
Boules
,
D.
,
Sharqawy
,
M. H.
, and
Ahmed
,
W. H.
,
2021
, “
Enhancement of Heat Transfer From a Horizontal Cylinder Wrapped With Whole and Segmented Layers of Metal Foam
,”
Int. J. Heat Mass Transfer
,
165
(
2021
), p.
120675
.10.1016/j.ijheatmasstransfer.2020.120675
25.
Kothandaraman
,
C. P.
, and
Subramanyan
,
S.
,
2018
, “
Heat and Mass Transfer Data Hand Book
,”
New Age International Publishers
,
London, UK/New Delhi, India
.
26.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
2000
, “
Forced Convection in High Porosity Metal Foams
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
122
(
3
), pp.
557
565
.10.1115/1.1287793
27.
Yao
,
Y.
,
Wu
,
H.
, and
Liu
,
Z.
,
2017
, “
Pore Scale Investigation of Heat Conduction of High Porosity Open-Cell Metal Foam/Paraffin Composite
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
139
(
9
), p.
091302
.10.1115/1.4036526
28.
Bai
,
X.
,
Kuwahara
,
F.
,
Mobedi
,
M.
, and
Nakayama
,
A.
,
2018
, “
Forced Convective Heat Transfer in a Channel Filled With a Functionally Graded Metal Foam Matrix
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
140
(
11
), p.
111702
.10.1115/1.4040613
29.
Tamayol
,
A.
, and
Hooman
,
K.
,
2011
, “
Thermal Assessment of Forced Convection Through Metal Foam Heat Exchangers
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
133
, p.
111801
.10.1115/1.4004530
30.
Ghosh
,
I.
,
2009
, “
How Good is Open-Cell Metal Foam as Heat Transfer Surface?
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
131
, p.
101004
.10.1115/1.3160537
31.
Calmidi
,
V. V.
,
1998
, “
Transport Phenomena in High Porosity Fibrous Metal Foams
,” Ph.D. dissertation,
University of Colorado
,
Boulder, CO
.
32.
Mahmoudi
,
Y.
, and
Karimi
,
N.
,
2014
, “
Numerical Investigation of Heat Transfer Enhancement in a Pipe Partially Filled With a Porous Material Under Local Thermal Non-Equilibrium Condition
,”
Int. J. Heat Mass Transfer
,
68
, pp.
161
173
.10.1016/j.ijheatmasstransfer.2013.09.020
33.
Yang
,
Y. T.
, and
Hwang
,
M. L.
,
2009
, “
Numerical Simulation of Turbulent Fluid Flow and Heat Transfer Characteristics in Heat Exchangers Fitted With Porous Media
,”
Int. J. Heat Mass Transfer
,
52
(
13–14
), pp.
2956
2965
.10.1016/j.ijheatmasstransfer.2009.02.024
34.
Huang
,
Z. F.
,
Nakayama
,
A.
,
Yang
,
K.
,
Yang
,
C.
, and
Liu
,
W.
,
2010
, “
Enhancing Heat Transfer in the Core Flow by Using Porous Medium Insert in a Tube
,”
Int. J. Heat Mass Transfer
,
53
(
5–6
), pp.
1164
1174
.10.1016/j.ijheatmasstransfer.2009.10.038
You do not currently have access to this content.