Abstract

In this study, an optimization methodology is followed in order to explore better form of heat sinks which improve thermal performances. Optimum designs of plate fin heat sinks (PFHSs) and modified shaped plate fin heat sinks (MS-PFHSs) are numerically investigated. The objective functions are minimizations of base plate temperature, entropy generation and mass. For both PFHSs and MS-PFHSs, optimization variables include inlet velocity (Vin), fin height (Hfin), and number of fins (NL). Plate fin form is adjusted for MS-PFHSs by adding two optimization variables: the rib height (Hrib) and the number of patterns in the flow direction (Wp). For the multi-objective optimization problems, the maximum base plate temperature limit (Tbase<70°C) is used. The multi-objective genetic algorithm (MOGA) is used to solve optimization problems, and three-dimensional parametric models for numerical optimization work are examined using the finite volume approach. The flow is steady, incompressible, and turbulent, and heat transfer in the heat sink is represented by conjugate heat transfer (CHT). It is shown that MS-PFHSs outperform in terms of the analyzed objective functions. For the optimum designs, Tbase values of MS-PFHS and PFHS are 60.23 °C and 65.25 °C, respectively, while the mass values are same. The results also indicate that Tbase obtained in the optimum design of MS-PFHS is 7.69% lower than that obtained in the optimum design of PFHS.

References

1.
Yang
,
K. S.
,
Chu
,
W. H.
,
Chen
,
I. Y.
, and
Wang
,
C. C.
,
2007
, “
A Comparative Study of the Airside Performance of Heat Sinks Having Pin Fin Configurations
,”
Int. J. Heat Mass Transfer
,
50
(
23–24
), pp.
4661
4667
.10.1016/j.ijheatmasstransfer.2007.03.006
2.
Sahin
,
B.
,
2007
, “
A Taguchi Approach for Determination of Optimum Design Parameters for a Heat Exchanger Having Circular-Cross Sectional Pin Fins
,”
Heat Mass Transfer
,
43
(
5
), pp.
493
502
.10.1007/s00231-006-0224-5
3.
Kuru
,
M. N.
,
2022
, “
Determination of the Optimum Operating Conditions and Geometrical Dimensions of the Plate Fin Heat Sinks Using Teaching-Learning-Based-Optimization Algorithm
,”
ASME J. Heat Mass Transfer-Trans. ASME
, 145(6), p.
063301
.10.1115/1.4056299
4.
Şara, O. N., 2003, “Performance analysis of rectangular ducts with staggered square pin fins,”
Energy Convers. Manage.
, 44(11), pp.
1787
1803
.10.1016/S0196-8904(02)00185-1
5.
Tanda
,
G.
,
2001
, “
Heat Transfer and Pressure Drop in a Rectangular Channel With Diamond-Shaped Elements
,”
Int. J. Heat Mass Transfer
,
44
(
18
), pp.
3529
3541
.10.1016/S0017-9310(01)00018-7
6.
Sparrow
,
E. M.
, and
Grannis
,
V. B.
,
1991
, “
Pressure Drop Characteristics of Heat Exchangers Consisting of Arrays of Diamond-Shaped Pin Fins
,”
Int. J. Heat Mass Transfer
,
34
(
3
), pp.
589
600
.10.1016/0017-9310(91)90108-Q
7.
Grannis, V. B., and Sparrow, E. M.,
1991
, “Numerical Simulation of Fluid Flow Through an Array of Diamond-Shaped Pin Fins,”
Numer. Heat Transfer, Part A
, 19(4), pp.
381
403
10.1080/10407789108944856.
8.
Erdinc
,
M. T.
,
Aktas
,
A. E.
,
Kuru
,
M. N.
,
Bilgili
,
M.
, and
Aydin
,
O.
,
2021
, “
An Optimization Study on Thermo-Hydraulic Performance Arrays of Circular and Diamond Shaped Cross-Sections in Periodic Flow
,”
Int. Commun. Heat Mass Transfer
,
129
, p.
105706
.10.1016/j.icheatmasstransfer.2021.105706
9.
Zhao
,
H.
,
Liu
,
Z.
,
Zhang
,
C.
,
Guan
,
N.
, and
Zhao
,
H.
,
2016
, “
Pressure Drop and Friction Factor of a Rectangular Channel With Staggered Mini Pin Fins of Different Shapes
,”
Exp. Therm. Fluid Sci.
,
71
, pp.
57
69
.10.1016/j.expthermflusci.2015.10.010
10.
Jin
,
W.
,
Wu
,
J.
,
Jia
,
N.
,
Lei
,
J.
,
Ji
,
W.
, and
Xie
,
G.
,
2021
, “
Effect of Shape and Distribution of Pin-Fins on the Flow and Heat Transfer Characteristics in the Rectangular Cooling Channel
,”
Int. J. Therm. Sci.
,
161
, p.
106758
.10.1016/j.ijthermalsci.2020.106758
11.
Jousson
,
H.
, and
Palm
,
B.
,
2000
, “
Thermal and Hydraulic Behavior of Plate Fin and Strip Fin Heat Sinks Under Varying Bypass Conditions
,”
IEEE Trans. Compon. Packag. Technol.
,
23
(
1
), pp.
47
54
.10.1109/6144.833041
12.
Teertstra
,
P.
,
Culham
,
J. R.
, and
Yovanovich
,
M. M.
,
1999
, “
Analytical Modeling of Forced Convection in Slotted Plate Fin Heat Sinks
,”
ASME
Paper No. IMECE1999-0964.10.1115/IMECE1999-0964
13.
Jonsson
,
H.
, and
Moshfegh
,
B.
,
2001
, “
Modeling of the Thermal and Hydraulic Performance of Plate Fin, Strip Fin, and Pin Fin Heat sinks - Influence of Flow Bypass
,”
IEEE Trans. Compon. Packag. Technol.
,
24
(
2
), pp.
142
149
.10.1109/6144.926376
14.
Inci
,
A. B.
, and
Bayer
,
Ö.
,
2019
, “
Experimental and Numerical Study on Heat Transfer Performance of Square, Cylindrical and Plate Heat Sinks in External Transition Flow Regime
,”
J. Therm. Sci. Technol.
,
39
(
2
), pp.
151
161
.https://dergipark.org.tr/tr/download/articlefile/1244059
15.
Yu
,
X.
,
Feng
,
J.
,
Feng
,
Q.
, and
Wang
,
Q.
,
2005
, “
Development of a Plate-Pin Fin Heat Sink and Its Performance Comparisons With a Plate Fin Heat Sink
,”
Appl. Therm. Eng.
,
25
(
2–3
), pp.
173
182
.10.1016/j.applthermaleng.2004.06.016
16.
Yang
,
Y. T.
, and
Peng
,
H. S.
,
2009
, “
Investigation of Planted Pin Fins for Heat Transfer Enhancement in Plate Fin Heat Sink
,”
Microelectron. Reliab.
,
49
(
2
), pp.
163
169
.10.1016/j.microrel.2008.11.011
17.
Nilpueng
,
K.
,
Mesgarpour
,
M.
,
Asirvatham
,
L. G.
,
Dalkılıç
,
A. S.
,
Ahn
,
H. S.
,
Mahian
,
O.
, and
Wongwises
,
S.
,
2021
, “
Effect of Pin Fin Configuration on Thermal Performance of Plate Pin Fin Heat Sinks
,” Case
Stud. Therm. Eng.
,
27
, p.
101269
.10.1016/j.csite.2021.101269
18.
Yuan
,
W.
,
Zhao
,
J.
,
Tso
,
C. P.
,
Wu
,
T.
,
Liu
,
W.
, and
Ming
,
T.
,
2012
, “
Numerical Simulation of the Thermal Hydraulic Performance of a Plate Pin Fin Heat Sink
,”
Appl. Therm. Eng.
,
48
, pp.
81
88
.10.1016/j.applthermaleng.2012.04.029
19.
Zhou
,
F.
, and
Catton
,
I.
,
2011
, “
Numerical Evaluation of Flow and Heat Transfer in Plate-Pin Fin Heat Sinks With Various Pin Cross-Sections
,”
Numer. Heat Transf. Part A: Appl.
,
60
(
2
), pp.
107
128
.10.1080/10407782.2011.588574
20.
Li
,
H. Y.
,
Chen
,
C. L.
,
Chao
,
S. M.
, and
Liang
,
G. F.
,
2013
, “
Enhancing Heat Transfer in a Plate-Fin Heat Sink Using Delta Winglet Vortex Generators
,”
Int. J. Heat Mass Transfer
,
67
, pp.
666
677
.10.1016/j.ijheatmasstransfer.2013.08.042
21.
Khudhur
,
D. S.
,
Al-Zuhairy
,
R. C.
, and
Kassim
,
M. S.
,
2022
, “
Thermal Analysis of Heat Transfer With Different Fin Geometry Through Straight Plate-Fin Heat Sinks
,”
Int. J. Therm. Sci.
,
174
, p.
107443
.10.1016/j.ijthermalsci.2021.107443
22.
Gupta
,
A.
,
Kumar
,
M.
, and
Patil
,
A. K.
,
2019
, “
Enhanced Heat Transfer in Plate Fin Heat Sink With Dimples and Protrusions
,”
Heat Mass Transfer
,
55
(
8
), pp.
2247
2260
.10.1007/s00231-019-02561-w
23.
Zhang
,
Y. L.
,
Liu
,
J. P.
,
Liang
,
H. F.
,
Cai
,
C. L.
,
Chong
,
D. T.
, and
Yan
,
J. J.
,
2022
, “
Experimental and Numerical Study of the Thermal and Hydraulic Performance of Fin Array With Wedge Shield in Bypass
,”
Int. J. Heat Mass Transfer
,
194
, p.
123094
.10.1016/j.ijheatmasstransfer.2022.123094
24.
Shaeri
,
M. R.
,
Yaghoubi
,
M.
, and
Jafarpur
,
K.
,
2009
, “
Heat Transfer Analysis of Lateral Perforated Fin Heat Sinks
,”
Appl. Energy
,
86
(
10
), pp.
2019
2029
.10.1016/j.apenergy.2008.12.029
25.
Al-Sallami
,
W.
,
Al-Damook
,
A.
, and
Thompson
,
H. M.
,
2017
, “
A Numerical Investigation of the Thermal-Hydraulic Characteristics of Perforated Plate Fin Heat Sinks
,”
Int. J. Therm. Sci.
,
121
, pp.
266
277
.10.1016/j.ijthermalsci.2017.07.022
26.
Huang
,
C. H.
, and
Tung
,
P. W.
,
2020
, “
Numerical and Experimental Studies on an Optimum Fin Design Problem to Determine the Deformed Wavy-Shaped Heat Sinks
,”
Int. J. Therm. Sci.
,
151
, p.
106282
.10.1016/j.ijthermalsci.2020.106282
27.
Bouchenafa
,
R.
,
Mohammed
,
H. A.
, and
Saim
,
R.
,
2019
, “
Numerical Study of the Thermal and Hydraulic Performances of Heat Sink Made of Wavy Fins
,”
Mech. Mech. Eng.
,
23
(
1
), pp.
150
161
.10.2478/mme-2019-0021
28.
Nilpueng
,
K.
,
Ahn
,
H. S.
,
Jerng
,
D. W.
, and
Wongwises
,
S.
,
2019
, “
Heat Transfer and Flow Characteristics of Sinusoidal Wavy Plate Fin Heat Sink With and Without Crosscut Flow Control
,”
Int. J. Heat Mass Transfer
,
137
, pp.
565
572
.10.1016/j.ijheatmasstransfer.2019.03.114
29.
Bejan
,
A.
,
1995
,
Entropy Generation Minimization
,
CRC Press Boca
,
Raton, FL
.
30.
Sayed Ahmed
,
S. A. E.
,
Mesalhy
,
O. M.
, and
Abdelatief
,
M. A.
,
2016
, “
Heat Transfer Characteristics and Entropy Generation for Wing-Shaped-Tubes With Longitudinal External Fins in Cross-Flow
,”
J. Mech. Sci. Technol.
,
30
(
6
), pp.
2849
2863
.10.1007/s12206-016-0544-4
31.
Kanargi
,
B.
,
Lee
,
P. S.
, and
Yap
,
C.
,
2018
, “
A Numerical and Experimental Investigation of Heat Transfer and Fluid Flow Characteristics of an Air-Cooled Oblique-Finned Heat Sink
,”
Int. J. Heat Mass Transfer
,
116
, pp.
393
416
.10.1016/j.ijheatmasstransfer.2017.09.013
32.
Razelos
,
P.
, and
Kakatsios
,
X.
,
2000
, “
Optimum Dimensions of Convecting-Radiating Fins: Part I - Longitudinal Fins
,”
Appl. Therm. Eng.
,
20
, pp.
1161
1192
.10.1016/S1359-4311(99)00089-7
33.
Culham
,
J. R.
, and
Muzychka
,
Y. S.
,
2001
, “
Optimization of Plate Fin Heat Sinks Using Entropy Generation Minimization
,”
IEEE Trans. Compon. Packag. Technol.
,
24
(
2
), pp.
159
165
.10.1109/6144.926378
34.
Shih
,
C. J.
, and
Liu
,
G. C.
,
2004
, “
Optimal Design Methodology of Plate-Fin Heat Sinks for Electronic Cooling Using Entropy Generation Strategy
,”
IEEE Trans. Compon. Packag. Technol.
,
27
(
3
), pp.
551
559
.10.1109/TCAPT.2004.831812
35.
Khan
,
W. A.
,
Culham
,
J. R.
, and
Yovanovich
,
M. M.
,
2009
, “
Optimization of Microchannel Heat Sinks Using Entropy Generation Minimization Method
,”
IEEE Trans. Compon. Packag. Technol.
,
32
(
2
), pp.
243
251
.10.1109/TCAPT.2009.2022586
36.
Yilmaz
,
A.
, and
Yilmaz
,
T.
,
2016
, “
Optimum Design of Cross-Flow In-Line Tube Banks at Constant Wall Temperature
,”
Heat Transfer Eng.
,
37
(
6
), pp.
523
534
.10.1080/01457632.2015.1060753
37.
Yilmaz
,
A.
,
Erdinç
,
M. T.
, and
Yilmaz
,
T.
,
2017
, “
Optimization of Crossflow Staggered Tube Banks for Prescribed Pressure Loss and Effectiveness
,”
J. Thermophys. Heat Transfer
,
31
(
4
), pp.
878
888
.10.2514/1.T5033
38.
Yilmaz
,
A.
,
Büyükalaca
,
O.
, and
Yilmaz
,
T.
,
2000
, “
Optimum Shape and Dimensions of Ducts for Convective Heat Transfer in Laminar Flow at Constant Wall Temperature
,”
Int. J. Heat Mass Transfer
,
43
(
5
), pp.
767
775
.10.1016/S0017-9310(99)00189-1
39.
Sahin
,
B.
,
Yakut
,
K.
,
Kotcioglu
,
I.
, and
Celik
,
C.
,
2005
, “
Optimum Design Parameters of a Heat Exchanger
,”
Appl. Energy
,
82
(
1
), pp.
90
106
.10.1016/j.apenergy.2004.10.002
40.
Sahin
,
B.
, and
Demir
,
A.
,
2008
, “
Thermal Performance Analysis and Optimum Design Parameters of Heat Exchanger Having Perforated Pin Fins
,”
Energy Convers. Manage.
,
49
(
6
), pp.
1684
1695
.10.1016/j.enconman.2007.11.002
41.
Sahin
,
B.
, and
Demir
,
A.
,
2008
, “
Performance Analysis of a Heat Exchanger Having Perforated Square Fins
,”
Appl. Therm. Eng.
,
28
(
5–6
), pp.
621
632
.10.1016/j.applthermaleng.2007.04.003
42.
Chen
,
H. T.
,
Chen
,
P. L.
,
Horng
,
J. T.
, and
Hung
,
Y. H.
,
2005
, “
Design Optimization for Pin-Fin Heat Sinks
,”
ASME J. Electron. Packag.
,
127
(
4
), pp.
397
406
.10.1115/1.2056572
43.
Sahin
,
B.
,
Ates
,
I.
,
Manay
,
E.
,
Bayrakceken
,
A.
, and
Celik
,
C.
,
2019
, “
Optimization of Design Parameters for Heat Transfer and Friction Factor in a Heat Sink With Hollow Trapezoidal Baffles
,”
Appl. Therm. Eng.
,
154
, pp.
76
86
.10.1016/j.applthermaleng.2019.03.056
44.
Subasi
,
A.
,
Ozsipahi
,
M.
,
Sahin
,
B.
, and
Gunes
,
H.
,
2017
, “
Performance Evaluation of RANS-Based Turbulence Models in Simulating a Honeycomb Heat Sink
,”
Heat Mass Transfer
,
53
(
7
), pp.
2435
2443
.10.1007/s00231-017-1969-8
45.
Subasi
,
A.
,
Sahin
,
B.
, and
Kaymaz
,
I.
,
2016
, “
Multi-Objective Optimization of a Honeycomb Heat Sink Using Response Surface Method
,”
Int. J. Heat Mass Transfer
,
101
, pp.
295
302
.10.1016/j.ijheatmasstransfer.2016.05.012
46.
Kotcioglu
,
I.
,
Cansiz
,
A.
, and
Nasiri Khalaji
,
M.
,
2013
, “
Experimental Investigation for Optimization of Design Parameters in a Rectangular Duct With Plate-Fins Heat Exchanger by Taguchi Method
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
604
613
.10.1016/j.applthermaleng.2012.05.036
47.
Kuru
,
M. N.
,
2023
, “
Optimization of Heat and Fluid Flow Over Curved Trapezoidal Winglet Pair Type Vortex Generators With One-Row and Three-Row
,”
Heat Mass Transfer
,
59
(
8
), pp.
1437
1458
.10.1007/s00231-022-03332-w
48.
Erdinc
,
M. T.
,
2023
, “
Computational Thermal-Hydraulic Analysis and Geometric Optimization of Elliptic and Circular Wavy Fin and Tube Heat Exchangers
,”
Int. Commun. Heat Mass Transfer
,
140
, p.
106518
.10.1016/j.icheatmasstransfer.2022.106518
49.
Darvish Damavandi
,
M.
,
Forouzanmehr
,
M.
, and
Safikhani
,
H.
,
2017
, “
Modeling and Pareto Based Multi-Objective Optimization of Wavy Fin-and-Elliptical Tube Heat Exchangers Using CFD and NSGA-II Algorithm
,”
Appl. Therm. Eng.
,
111
, pp.
325
339
.10.1016/j.applthermaleng.2016.09.120
50.
Kuru
,
M. N.
,
Erdinc
,
M. T.
, and
Yilmaz
,
A.
,
2020
, “
Optimization of Heat Transfer and Pressure Drop in Axially Finned Staggered Tube Banks
,”
Heat Transf. Eng.
,
42
(
15
), pp.
1268
1285
.10.1080/01457632.2020.1785696
51.
Ranut
,
P.
,
Janiga
,
G.
,
Nobile
,
E.
, and
Thévenin
,
D.
,
2014
, “
Multi-Objective Shape Optimization of a Tube Bundle in Cross-Flow
,”
Int. J. Heat Mass Transfer
,
68
, pp.
585
598
.10.1016/j.ijheatmasstransfer.2013.09.062
52.
Nikbay
,
M.
, and
Kuru
,
M. N.
,
2013
, “
Reliability Based Multidisciplinary Optimization of Aeroelastic Systems With Structural and Aerodynamic Uncertainties
,”
J. Aircr.
,
50
(
3
), pp.
708
715
.10.2514/1.C031693
53.
Gupta
,
D.
,
Saha
,
P.
, and
Roy
,
S.
,
2022
, “
Multi-Objective Optimization of the Perforated Micro Pin-Fin Heat Sink Using Non-Dominated Sorting Genetic Algorithm-II Coupled With Computational Fluid Dynamics Simulation
,”
ASME J. Heat Transfer-Trans. ASME
,
144
(
9
), p.
093301
.10.1115/1.4054761
54.
Sahiti
,
N.
,
Durst
,
F.
, and
Geremia
,
P.
,
2007
, “
Selection and Optimization of Pin Cross-Sections for Electronics Cooling
,”
Appl. Therm. Eng.
,
27
(
1
), pp.
111
119
.10.1016/j.applthermaleng.2006.05.018
55.
Ahmed
,
H. E.
,
2016
, “
Optimization of Thermal Design of Ribbed Flat-Plate Fin Heat Sink
,”
Appl. Therm. Eng.
,
102
, pp.
1422
1432
.10.1016/j.applthermaleng.2016.03.119
56.
Ansys Inc,
2019
, “Ansys Fluent User's Guide,” Ansys Inc, Canonsburg, PA, accessed Aug. 5, 2024, https://www.afs.enea.it/project/neptunius/docs/fluent/html/ug/main_pre.htm
57.
F-Chart Software,
2021
, “Engineering Equation Solver (EES) Program,” F-Chart Software, Madison, WI, accessed Aug. 5, 2024, https://fchartsoftware.com/ees/
You do not currently have access to this content.