Abstract

Electromagnetic stirring (EMS) is a technique that has the potential to improve steel quality with fine microstructure by fragmentation of dendrites and enhancing the inclusion removal. The success of implementing the EMS lies in the selection of key input parameters such as position, frequency, and current density of the stirrer. In the present study, an integrated mathematical model consisting of liquid steel solidification and two phase interface is numerically developed with the use of EMS. The enthalpy porosity and volume of fluid (VOF) model are adopted for numerical modeling analysis of solidification and interface level fluctuation, respectively. The results reveal that on moving EMS downwards decreases the maximum magnetic field value, widens the mushy zone, and promotes the stability of the interface. Current intensity and frequency are seen to have the opposite effect on stirring intensity and interface fluctuation. With an increase in frequency, both stirring intensity and interface level fluctuations decrease while the high liquid fraction region increases. Moreover, current density enhances the swirling flow intensity and homogenizes the liquid fraction, thereby promoting equiaxed grain formation. Interface fluctuation is seen to increase with current density.

References

1.
Miki
,
Y.
, and
Takeuchi
,
S.
,
2003
, “
Internal Defects of Continuous Casting Slabs Caused by Asymmetric Unbalanced Steel Flow in Mold
,”
ISIJ Int.
,
43
(
10
), pp.
1548
1555
.10.2355/isijinternational.43.1548
2.
Camisani-Calzolari
,
F. R.
,
Craig
,
I. K.
, and
Pistorius
,
P. C.
,
2003
, “
A Review on Causes of Surface Defects in Continuous Casting
,”
IFAC Proc. Vol.
,
36
(
24
), pp.
113
121
.10.1016/S1474-6670(17)37613-9
3.
Lee
,
W. h.
, and
Yi
,
K. W.
,
2020
, “
Relationship Between Fluid Flow Stability and Submerged Entry Nozzle Port Angle in a Conventional Slab Continuous-Casting Mold
,”
Met. Mater. Int.
,
27
(
10
), pp.
4168
4181
.10.1007/s12540-020-00813-7
4.
Cho
,
S. M.
,
Thomas
,
B. G.
, and
Kim
,
S. H.
,
2019
, “
Effect of Nozzle Port Angle on Transient Flow and Surface Slag Behavior During Continuous Steel-Slab Casting
,”
Metall. Mater. Trans. B
,
50
(
1
), pp.
52
76
.10.1007/s11663-018-1439-9
5.
Morales
,
R. D.
,
Tang
,
Y.
,
Nitzl
,
G.
,
Eglsäeer
,
C.
, and
Hackl
,
G.
,
2012
, “
Design of a Submerged Entry Nozzle for Thin Slab Molds Operating at High Casting Speeds
,”
ISIJ Int.
,
52
(
9
), pp.
1607
1615
.10.2355/isijinternational.52.1607
6.
Salazar-Campoy
,
M. M.
,
Morales
,
R. D.
,
Nájera-Bastida
,
A.
,
Calderón-Ramos
,
I.
,
Cedillo-Hernández
,
V.
, and
Delgado-Pureco
,
J. C.
,
2018
, “
A Physical Model to Study the Effects of Nozzle Design on Dispersed Two-Phase Flows in a Slab Mold Casting Ultra-Low-Carbon Steels
,”
Metall. Mater. Trans. B
,
49
(
2
), pp.
812
830
.10.1007/s11663-018-1181-3
7.
Meng
,
X.
,
Bachmann
,
M.
,
Artinov
,
A.
, and
Rethmeier
,
M.
,
2019
, “
Experimental and Numerical Assessment of Weld Pool Behavior and Final Microstructure in Wire Feed Laser Beam Welding With Electromagnetic Stirring
,”
J. Manuf. Process.
,
45
, pp.
408
418
.10.1016/j.jmapro.2019.07.021
8.
Wang
,
F.
,
Wang
,
E.
,
Zhang
,
L.
,
Jia
,
P.
, and
Wang
,
T.
,
2017
, “
Influence of Electromagnetic Stirring (EMS) on the Microstructure and Mechanical Property of Incoloy825 Superalloy
,”
J. Manuf. Process.
,
26
, pp.
364
371
.10.1016/j.jmapro.2017.02.026
9.
Toh
,
T.
,
Takeuchi
,
E.
,
Hojo
,
M.
,
Kawai
,
H.
, and
Matsumura
,
S.
,
1997
, “
Electromagnetic Control of Initial Solidification in Continuous Casting of Steel by Low Frequency Alternating Magnetic Field
,”
ISIJ Int.
,
37
(
11
), pp.
1112
1119
.10.2355/isijinternational.37.1112
10.
Kim
,
H.
,
Park
,
J.
,
Jeong
,
H.
, and
Kim
,
J.
,
2002
, “
Continuous Casting of Billet With High Frequency Electromagnetic Field
,”
ISIJ Int.
,
42
(
2
), pp.
171
177
.10.2355/isijinternational.42.171
11.
Natarajan
,
T. T.
, and
El-Kaddah
,
N.
,
1998
, “
Finite Element Analysis of Electromagnetically Driven Flow in Sub-Mold Stirring of Steel Billets and Slabs
,”
ISIJ Int.
,
38
(
7
), pp.
680
689
.10.2355/isijinternational.38.680
12.
Dong
,
Q.
,
Zhang
,
J.
,
Liu
,
Q.
, and
Yin
,
Y.
,
2017
, “
Magnetohydrodynamic Calculation for Electromagnetic Stirring Coupling Fluid Flow and Solidification in Continuously Cast Billets
,”
Steel Res. Int.
,
88
(
11
), pp.
1
12
.10.1002/srin.201700067
13.
Ren
,
B. Z.
,
Chen
,
D. F.
,
Wang
,
H. D.
,
Long
,
M. J.
, and
Han
,
Z. W.
,
2015
, “
Numerical Simulation of Fluid Flow and Solidification in Bloom Continuous Casting Mould With Electromagnetic Stirring
,”
Ironmaking Steelmaking
,
42
(
6
), pp.
401
408
.10.1179/1743281214Y.0000000240
14.
Liu
,
H.
,
Xu
,
M.
,
Qiu
,
S.
, and
Zhang
,
H.
,
2012
, “
Numerical Simulation of Fluid Flow in a Round Bloom Mold With in-Mold Rotary Electromagnetic Stirring
,”
Metall. Mater. Trans. B
,
43
(
6
), pp.
1657
1675
.10.1007/s11663-012-9737-0
15.
Wang
,
B. X.
,
Chen
,
W.
,
Chen
,
Y.
, and
Feng
,
Y. P.
,
2015
, “
Coupled Numerical Simulation on Electromagnetic Field and Flow Field in the Round Billet Mould With Electromagnetic Stirring
,”
Ironmaking Steelmaking
,
42
(
1
), pp.
63
69
.10.1179/1743281214Y.0000000201
16.
Ren
,
Z.
,
Dong
,
H.
,
Deng
,
K.
, and
Jiang
,
G.
,
2001
, “
Influence of High Frequency Electromagnetic Field on the Initial Solidification During Electromagnetic Continuous Casting
,”
ISIJ Int.
,
41
(
9
), pp.
981
985
.10.2355/isijinternational.41.981
17.
Li
,
T.
,
Nagaya
,
S.
,
Sassa
,
K.
, and
Asai
,
S.
,
1995
, “
Study of Meniscus Behavior and Surface Properties During Casting in a High-Frequency Magnetic Field
,”
Metall. Mater. Trans. B
,
26
(
2
), pp.
353
359
.10.1007/BF02660978
18.
Park
,
J.
,
Kim
,
H.
,
Jeong
,
H.
,
Kim
,
G.
,
Cho
,
M. J.
,
Chung
,
J.-S.
,
Yoon
,
M.
,
Kim
,
K. R.
, and
Choi
,
J.
,
2003
, “
Continuous Casting of Steel Billet With High Frequency Electromagnetic Field
,”
ISIJ Int.
,
43
(
6
), pp.
813
819
.10.2355/isijinternational.43.813
19.
Gupta
,
V. K.
,
Jha
,
P. K.
, and
Jain
,
P. K.
,
2022
, “
A Novel Approach to Predict the Inclusion Removal in a Billet Caster Mold With the Use of Electromagnetic Stirrer
,”
J. Manuf. Process.
,
83
, pp.
27
39
.10.1016/j.jmapro.2022.08.048
20.
Fleisch
,
D.
,
2008
,
A Student's Guide to Maxwell's Equations
,
Cambridge University Press
,
New York
.
21.
2019
,
Fluent Magnetohydrodynamics (MHD) Modeule Manual
,
Ansys Inc.
,
Canonsburg, PA
.
22.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
2006
, “
Introduction to Computational Fluid Dynamics
,” 2nd ed., Vol.
43
, No.
08
,
Pearson Education Limited
,
Essex, UK
10.5860/choice.43-4683.
23.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.10.1016/0045-7825(74)90029-2
24.
Savage
,
J.
, and
Prichard
,
W. H.
,
1954
, “
The Problem of Rupture of the Billet in the Continuous Casting of Steel
,”
J. Iron & Steel Inst.
,
178
(
3
), pp.
269
277
.
25.
Ren
,
B.
,
Chen
,
D.
,
Wang
,
H.
, and
Long
,
M.
,
2015
, “
Numerical Analysis of Coupled Turbulent Flow and Macroscopic Solidification in a Round Bloom Continuous Casting Mold With Electromagnetic Stirring
,”
Steel Res. Int.
,
86
(
9
), pp.
1104
1115
.10.1002/srin.201400178
26.
Wang
,
H.
,
Li
,
G.
,
Lei
,
Y.
,
Zhao
,
Y.
,
Dai
,
Q.
, and
Wang
,
J.
,
2005
, “
Mathematical Heat Transfer Model Research for the Improvement of Continuous Casting Slab Temperature
,”
ISIJ Int.
,
45
(
9
), pp.
1291
1296
.10.2355/isijinternational.45.1291
27.
Sakane
,
J.
,
Li
,
B. Q.
, and
Evans
,
J. W.
,
1988
, “
Mathematical Modeling of Meniscus Profile and Melt Flow in Electromagnetic Casters
,”
Metall. Trans. B
,
19
(
3
), pp.
397
408
.10.1007/BF02657737
You do not currently have access to this content.