Abstract
On account of the search for the optimal composition and structure-phase state of Zr alloys much attention is paid to upgrade the E110 (Zr-1 %Nb) and E635 (Zr-1 %Nb-0.35 %Fe-1.2 %Sn) alloys that have proved well in terms of irradiation-induced creep and growth, high strength characteristics, and corrosion. The difference between the alloy properties is determined by their states related to their compositions. The structure-phase state of the Zr-Nb and Zr-Nb-Fe-Sn systems has been studied after heat treatment in the α-- and α + β- regions and its influence on the irradiation-induced growth (IIG) during BOR-60 irradiation at T =315–350 °C was investigated. A substantial difference has been shown in the deformation effected by IIG of those alloys, it is less for Zr-Nb-Fe-Sn alloys in dissimilar structure-phase states. The incubation period of the accelerated growth stage is determined by the α-matrix composition, the phase state and the initial dislocation structure. Neutron irradiation leads to a redistribution of alloying elements between the matrix and the precipitates, and to changes in the α-solid solution composition. These changes affect accumulation and mobility of irradiation defects, anisotropy and formation of vacancy c-component dislocation loops. The appearance of c-loops usually correlates with an axial direction acceleration of the IIG of tubes conforming to their texture. The basic regularities of the phase transformation have been established: a) β-Nb precipitates in Zr-Nb alloys are altered in composition to reduce the Nb content from 85–90 % to ∼ 50 %, fine precipitates likely enriched in Nb are formed; b) β-Zr precipitates are subject to irradiation-stimulated decomposition; c) Laves phase precipitates change composition (the content of Fe decreases) and crystal structure, HCP to BCC (β-Nb); d) (Zr,Nb)2Fe precipitates having the FCC lattice retain their composition and crystal structure; e) no amorphization of any secondary phase precipitates is observable under the given conditions of irradiation (T = 315–350 °C). Based on the dpa, the results were compared pertaining to Zr-alloy IIG deformation vs. fluence in various reactors at different energies of fast neutrons. The presented graphs enable comparison between the results of numerous experiments and enable predictions of Zr-material behavior in long-term operation and at high burn-up in commercial reactors.