Abstract

The fatigue strength assessment of parts subjected to rolling and sliding contacts is a multiaxial fatigue problem because of the cyclic variation of the six components of the stress tensor, which generate non proportional stress paths. In real steels, the difficulty of the problem is increased by the presence of defects, which has to be considered in order to achieve an accurate assessment of their multiaxial fatigue strength. In this context, this paper analyzes the behavior and accuracy of some multiaxial fatigue criteria when dealing with a quenched and tempered steel with and without defects. Several fatigue tests on smooth and micronotched specimens were carried out, for different stress ratio conditions. The results are confronted with the most popular multiaxial fatigue criteria of the critical plane class (e.g., Dang Van, Findley) and implementing an integral approach (e.g., Liu-Zenner). Even if some of these criteria fit the results when smooth specimens are considered, noticeable contradictions arise when they are applied to steels containing defects. From this point of view, it seems that new criteria should be considered for rolling contact fatigue in presence of defects.

References

1.
Dang Van
,
K.
, “
Macro-Micro Approach in High-Cycle Multiaxial Fatigue
,”
Advances in Multiaxial Fatigue
, ASTM Standard STP 1191,
D. L.
McDowell
and
R.
Ellis
, Eds.,
ASTM International
,
Philadelphia
, pp.
120
-
130
,
1993
.
2.
Dang Van
,
K.
,
Griveau
,
B.
, and
Message
,
O.
, “
On a New Multiaxial Fatigue Limit Criterion: Theory and Applications
,” in
EGF 3
,
M. W.
Brown
and
K. J.
Miller
, Eds.,
Mechanical Engineering Publications
,
London
,
1989
, pp.
479
-
496
.
3.
Dang Van
,
K.
and
Maitournam
,
M. H.
, “
Rolling Contact in Railways: Modelling, Simulation and Damage Prediction
,”
Fatigue Fract. Eng. Mater. Struct.
 8756-758X, Vol.
26
, No.
10
,
2003
, pp.
939
-
948
.
4.
Kim
,
T. W.
,
Cho
,
Y. J.
, and
Lee
,
H. W.
, “
The Fatigue Crack Initiation Life Prediction Based on Several High-Cycle Fatigue Criteria Under Spherical Rolling Contact
,”
Tribol. Trans.
 1040-2004, Vol.
46
, No.
1
,
2003
, pp.
76
-
82
.
5.
Sraml
,
M.
,
Flasker
,
J.
, and
Potrc
,
I.
, “
Critical Plane Modelling of Fatigue Initiation Under Rolling and Sliding Contact
,”
J. Strain Anal. Eng. Des.
 0309-3247, Vol.
39
, No.
2
,
2004
, pp.
225
-
236
.
6.
Desimone
,
H.
,
Bernasconi
,
A.
, and
Beretta
,
S.
, “
On the Application of Dang Van Criterion to Rolling Contact Fatigue
,”
Wear
 0043-1648, Vol.
260
, No.
5–6
,
2006
, pp.
567
-
572
.
7.
Johnson
,
K. L.
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
,
1987
.
8.
Ponter
,
A.
,
Hearle
,
A.
, and
Johnson
,
K.
, “
Application of the Kinematical Shakedown Theorem to Rolling and Sliding Point Contacts
,”
J. Mech. Phys. Solids
 0022-5096, Vol.
33
,
1984
, pp.
339
-
364
.
9.
Sackfield
,
A.
and
Hills
,
D. A.
, “
Some Useful Results in the Classical Hertz Contact Problem
,”
J. Strain Anal.
 0022-4758, Vol.
18
,
1983
, pp.
101
-
105
.
10.
Hills
,
D. A.
, and
Sackfield
,
A.
, “
Yield and Shakedown States in the Contact of Generally Curved Bodies
,”
J. Strain Anal.
 0022-4758, Vol.
19
,
1984
, pp.
9
-
14
.
11.
Peridas
,
G.
, and
Hills
,
D. A.
, “
Crack Initiation: The Choice of Tests Available to Calibrate Dang Van's Criterion
,”
Fatigue Fract. Eng. Mater. Struct.
 8756-758X, Vol.
25
,
2002
, pp.
321
-
330
.
12.
Murakami
,
Y.
,
Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions
,
Elsevier
,
Oxford
,
2003
.
13.
Monnot
,
J.
,
Heritier
,
B.
, and
Cogne
,
J.
, “
Relationship of Melting Practice, Inclusion Type, and Size With Fatigue Resistance of Bering Steels
,” in
Effect of Steel Manufacturing Processes on the Quality of Bearing Steels
, ASTM Standard STP 987,
J. J. C.
Hoo
, Eds.,
ASTM
,
Philadelphia
, pp.
61
-
80
,
1988
.
14.
Beretta
,
S.
, “
Application of Multiaxial Fatigue Criteria to Materials Containing Defects
,”
Fatigue Fract. Eng. Mater. Struct.
 8756-758X, Vol.
26
, No.
6
,
2003
, pp.
551
-
559
.
15.
Nadot
,
Y.
and
Denier
,
V.
, “
Fatigue Failure of Suspension Arm: Experimental Analysis and Multiaxial Criterion
,”
Eng. Failure Anal.
 1350-6307, Vol.
11
, No.
4
,
2004
, pp.
485
-
499
.
16.
Heywood
,
R. B.
,
Designing Against Fatigue
,
Chapman and Hall Ltd
,
London
,
1962
.
17.
Dalan
,
T. J.
, “
Stress Range
,” in:
O. J.
Horger
, Ed.,
ASME Handbook-Metals Engineering Design
,
New York
,
1953
.
18.
Smith
,
R. A.
and
Miller
,
K. J.
, “
Fatigue Cracks at Notches
,”
Int. J. Mech. Sci.
 0020-7403, Vol.
19
,
1977
, pp.
11
-
22
.
19.
Findley
,
W. N.
, “
A Theory for the Effect of Mean Stress on Fatigue of Metals Under Combined Torsion and Axial Load or Bending
,”
ASME J. Eng. Ind.
 0022-0817, Vol.
81
,
1959
, pp.
301
-
306
.
20.
Liu
,
J.
and
Zenner
,
H.
, “
Fatigue Limit of Ductile Metals Under Multiaxial Loading
,” in
Biaxial/Multiaxial Fatigue and Fracture
,
A.
Carpinteri
,
M.
de Freitas
, and
A.
Spagnoli
, Eds., ESIS STP Vol.
31
,
Elsevier Science
,
New York
,
2003
, pp.
147
-
163
.
This content is only available via PDF.
You do not currently have access to this content.