Abstract

In the heat treatment of steel, quenching is done to prevent ferrite or pearlite formation and allows formation of bainite and martensite. For a particular grade of steel, the effectiveness of quenching depends on the cooling characteristics of the quenching medium. The cooling rate is not a constant throughout the quenching process; instead it varies depending upon the various stages that occur during the quenching process. Knowledge of heat transfer during various stages of quenching and kinetics of wetting of the quench medium is fundamental to the understanding of the relationship between material, quench medium, microstructure, and properties. In this paper the characteristics of various quench media, the effect of process parameters on quenching, mechanisms of thermal transport, methods of assessing severity of quenching, and techniques of estimation of heat transfer coefficients are reviewed. An attempt is also made to highlight the importance of wetting kinetics of liquid media on quenching.

References

1.
ASM Handbook
, 10th ed., Vol.
4
, “
Heat Treatment
,”
ASM International
,
Materials Park, OH
,
1991
, pp.
67
120
.
2.
Totten
,
G. E.
,
Bates
,
C. E.
, and
Clinton
,
N. A.
,
Handbook of Quenching and Quenching Technology
,
ASM International
,
Materials Park, OH
,
1993
, pp.
1
160
.
3.
Liscic
,
B.
, “
State of the Art in Quenching
,”
Proceedings of the 3rd Seminar of the International Federation of Heat Treatment and Surface Engineering
,
The Institute of Materials
,
London
,
1993
, pp.
1
32
.
4.
Rajan
,
T. V.
,
Sharma
,
C. P.
, and
Sharma
,
A.
,
Heat Treatment Principles and Techniques
,
Prentice-Hall of India
,
New Delhi
,
1998
.
5.
Quenching—Understanding, Controlling and Optimizing the Process—I, www.wpi.edu/Academics/Research/CHTE/Research/quenching1.pdf, Date of access: 01.02.2008.
6.
Kobasko
,
N. I.
,
Moskalenko
,
A. A.
,
Totten
,
G. E.
, and
Webster
,
G. M.
, “
Experimental Determination of First and Second Critical Heat Flux Densities and Quench Process Characterization
,”
J. Mater. Eng. Perform.
 1059-9495, Vol.
6
,
1997
, pp.
93
101
.
7.
Takamasa
,
T.
,
Hazuku
,
T.
,
Okamoto
,
K.
,
Mishima
,
K.
, and
Furuya
,
M.
, “
Radiation Induced Surface Activation on Leidenfrost and Quenching Phenomena
,”
Exp. Therm. Fluid Sci.
 0894-1777, Vol.
29
,
2005
, pp.
267
274
.
8.
Heming
,
C.
,
Xieqing
,
H.
, and
Jianbin
,
X.
, “
Comparison of Surface Heat Transfer Coefficients Between Various Diameter Cylinders During Rapid Cooling
,”
J. Mater. Process. Technol.
 0924-0136, Vol.
138
,
2003
, pp.
399
402
.
9.
Puschmann
,
F.
and
Specht
,
E.
, “
Transient Measurement of Heat Transfer in Metal Quenching with Atomized Sprays
,”
Exp. Therm. Fluid Sci.
 0894-1777 https://doi.org/10.1016/j.expthermflusci.2003.09.004, Vol.
28
,
2004
, pp.
607
615
.
10.
Totten
,
G. E.
,
Webster
,
G. M.
,
Jarvis
,
L. M.
,
Kang
,
S. H.
, and
Han
,
S. W.
, “
Thermal/Oxidative Stability and Polymer Drag Out Behavior of Polymer Quenchants
,”
17th ASM Heat Treating Society Conference Proceedings including 1st International Induction Heat Treating Symposium
,
1997
, pp.
443
448
.
11.
Katto
,
Y.
and
Yokoya
,
S.
, “
Principal Mechanism of Boiling Crisis in Pool Boiling
,”
Int. J. Heat Mass Transfer
 0017-9310 https://doi.org/10.1016/0017-9310(68)90005-7, Vol.
11
,
1968
, pp.
993
1002
.
12.
Von Bergen
,
R. T.
, “
The Effects of Quenchant Media Selection and Control on the Distortion of Engineered Steel Parts
,”
Mater. Sci. Forum
 0255-5476, Vol.
163–165
,
1994
, pp.
139
150
.
13.
Lai
,
G. Y.
,
Wood
,
W. E.
,
Clark
,
R. A.
,
Zackay
,
V. F.
, and
Parker
,
E. R.
, “
The Effect of Austenetizing Temperature on the Microstructure and Mechanical Properties of As-Quenched 4340 Steel
,”
Metall. Trans. B
 0360-2141, Vol.
5
,
1974
, pp.
1663
1670
.
14.
Hohl
,
R.
,
Blum
,
J.
,
Buchholz
,
M.
,
Luttich
,
T.
,
Auracher
,
H.
, and
Marquardt
,
M.
, “
Model Based Experimental Analysis of Pool Boiling Heat Transfer with Controlled Wall Temperature Transients
,”
Int. J. Heat Mass Transfer
 0017-9310, Vol.
44
,
2001
, pp.
2225
2238
.
15.
Lee
,
K. J.
and
Han
,
H. N.
, “
Analysis of Heat Transfer During Cooling of Plain Carbon Steels
,”
Scr. Mater.
 1359-6462, Vol.
40
,
1999
, pp.
683
689
.
16.
Houghton on quenching: www.houghtonintl.com/documents/Houghton_On_Quenching.pdf, (date of access, 7th April
2008
).
17.
Reti
,
T.
,
Fried
,
Z.
, and
Felde
,
I.
, “
Computer Simulation of Steel Quenching Process Using a Multi Phase Transformation Model
,”
Comput. Mater. Sci.
 0927-0256, Vol.
22
,
2001
, pp.
261
278
.
18.
Bass
,
R.
,
Leonard
,
D.
,
Allen
,
M.
,
Bennett
,
J. C.
, Jr.
,
Cross
,
M.
, and
Brown
,
K.
, “
Heat Transfer of Turbine Disks in a Liquid Quench, Part I. Experimental Setup
,”
17th ASM Heat Treating Society Conference Proceedings including 1st International Induction Heat Treating Symposium
,
1997
, pp.
341
345
.
19.
Jaklic
,
A.
,
Glogovac
,
B.
,
Kolenko
,
T.
,
Zupancic
,
B.
, and
Tezak
,
B.
, “
A Simulation of Heat Transfer During Billet Transport
,”
Appl. Therm. Eng.
 1359-4311, Vol.
22
,
2002
, pp.
873
883
.
20.
Auracher
,
H.
and
Marquardt
,
W.
, “
Experimental Studies of Boiling Mechanisms in All Boiling Regimes Under Steady State and Transient Conditions
,”
Int. J. Therm. Sci.
 1290-0729 https://doi.org/10.1016/S1290-0729(02)01352-2, Vol.
41
,
2002
, pp.
586
598
.
21.
Liu
,
C. C.
,
Xu
,
X. J.
, and
Liu
,
Z.
, “
A FEM Modeling of Quenching and Tempering and Its Application in Industrial Engineering
,”
Finite Elem. Anal. Design
 0168-874X, Vol.
39
,
2003
, pp.
1053
1070
.
22.
Bernardin
,
J. D.
,
Stebbins
,
C. J.
, and
Mudawar
,
I.
, “
Effects of Surface Roughness on Water Droplet Impact History and Heat Transfer Regimes
,”
Int. J. Heat Mass Transfer
 0017-9310 https://doi.org/10.1016/S0017-9310(96)00067-1, Vol.
40
,
1997
, pp.
73
88
.
23.
Zhang
,
L.
and
Shoji
,
M.
, “
Nucleation Site Interaction in Pool Boiling on the Artificial Surface
,”
Int. J. Heat Mass Transfer
 0017-9310 https://doi.org/10.1016/S0017-9310(02)00291-0, Vol.
46
,
2003
, pp.
513
523
.
24.
Luke
,
A.
, “
Pool Boiling Heat Transfer from Horizontal Tubes with Different Surface Roughness
,”
Int. J. Refrig.
 0140-7007 https://doi.org/10.1016/S0140-7007(97)00062-5, Vol.
20
,
1997
, pp.
561
574
.
25.
Wang
,
L.
,
Sun
,
D. W.
,
Liang
,
P.
,
Zhuang
,
L.
, and
Tan
,
Y.
, “
Heat Transfer Characteristics of Carbon Steel Spirally Fluted Tube for High Pressure Preheaters
,”
Energy Convers. Manage.
 0196-8904, Vol.
41
,
2000
, pp.
993
1005
.
26.
Park
,
C. W.
,
Cho
,
H. C.
, and
Kang
,
Y. T.
, “
The Effect of Heat Transfer Additive and Surface Roughness of Micro-Scale Hatched Tubes on Absorption Performance
,”
Int. J. Refrig.
 0140-7007, Vol.
27
,
2004
, pp.
264
270
.
27.
Segerberg
,
S.
and
Troell
,
E.
, “
The Consequences of Changing to Alternative Quenchants in Heat Treatment—Materials, Equipment and Facilities, Safety and Environment
,”
Proceedings of the 16th ASM Heat Treating Society Conference and Exposition
, Cincinnati, OH,
1996
, pp.
367
371
.
28.
Lainer
,
K.
,
Tensi
,
H. M.
, and
Totten
,
G. E.
, “
Compartaive Cooling Performance of Two Vegetable Oils and Mineral Oil
,”
Proceedings of the 18th ASM Heat Treating Society Conference and Exposition
, Chicago, IL,
1998
, pp.
568
714
.
29.
Scott MacKenzie
,
D.
, “
Advances in Quenching—A Discussion of Present and Future Technologies
,”
ASM Heat Treating Show and Exposition
, Indianapolis, IN,
2003
, p. 27.
30.
Alegavi
,
S.
and
Prabhu
,
K. N.
, “
Ecofriendly Quenchants for Heat Treatment of Castings
,”
Indian Foundry J.
 0379-5446, Vol.
33
, No.
1
,
2008
, pp.
33
40
.
31.
Prabhu
,
K. N.
and
Fernandes
,
P.
, “
Nanoquenchants for Industrial Heat Treatment
,”
J. Mater. Eng. Perform.
 1059-9495, Vol.
17
, No.
1
,
2008
, pp.
101
103
.
32.
Greco
,
A.
and
Vanoli
,
G. P.
, “
Flow Boiling Heat Transfer with HFC Mixtures in a Smooth Horizontal Tube. Part I: Experimental Investigations
,”
Exp. Therm. Fluid Sci.
 0894-1777, Vol.
29
,
2005
, pp.
189
198
.
33.
Bass
,
R.
,
Leonard
,
D.
,
Allan
,
M.
,
Bennet
,
J.
, Jr.
,
Cross
,
M.
,
Morra
I. J.
, and
Brown
,
K.
, “
Heat Transfer of Turbine Disks in a Liquid Quench: Part III. Experimental Results for a Disk with Bore
,”
Proceedings of the 18th Conference of Heat Treating Symposium including the Lui Dai Memorial Symposium
,
ASM International
,
Materials Park, OH
,
1998
, pp.
552
556
.
34.
Zhang
,
H.
,
Mudawar
,
I.
, and
Hasan
,
M. M.
, “
Investigation of Interfacial Behaviour During the Flow Boiling CHF Transient
,”
Int. J. Heat Mass Transfer
 0017-9310, Vol.
47
,
2004
, pp.
1275
1288
.
35.
Zhang
,
H.
,
Mudawar
,
I.
, and
Hasan
,
M. M.
, “
Experimental and Theoretical Study of Orientation Effects on Flow Boiling CHF
,”
Int. J. Heat Mass Transfer
 0017-9310 https://doi.org/10.1016/S0017-9310(02)00152-7, Vol.
45
,
2002
, pp.
4463
4477
.
36.
Sarmiento
,
G. S.
,
Totten
,
G. E.
,
Webster
,
G. M.
, and
Mues
,
E.
, “
Computational Determination of Heat Transfer Coefficients of Aqueous Polyalkylene Glycols Bath Solutions in Quenching Operations
,”
Proceedings of the 16th ASM Heat Treating Society Conference and Exposition
, Cincinnati, OH,
1996
, pp.
383
390
.
37.
Ma
,
S.
,
Varde
,
A. S.
,
Takahashi
,
M.
,
Rondeau
,
D. K.
,
Maniruzzaman
,
M.
, and
Sisson
,
R. D.
, Jr.
, “
Quenching—Understanding, Controlling and Optimizing the Process
,”
Proceedings of the 4th International Conference on Quenching and the Control of Distortion
, Beijing,
2003
.
38.
Webster
,
G. M.
and
Totten
,
G. E.
, “
Cooling Curve Analysis—Data Acquisition
,”
Proceedings of the 16th ASM Heat Treating Society Conference and Exposition
, Cincinnati, OH,
1996
, pp.
427
434
.
39.
Totten
,
G. E.
,
Dakins
,
M. E.
, and
Heins
,
R. W.
, “
Cooling Curve Analysis of Synthetic Quenchants—A Historical Perspective
,”
J. Heat Treating
, Vol.
6
,
1988
, pp.
87
95
40.
Tensi
,
H. M.
,
Lanier
,
K.
,
Totten
,
G. E.
, and
Webster
,
G. M.
, “
Quenching Uniformity and Surface Cooling Mechanisms
,”
Proceedings of the 16th ASM Heat Treating Society Conference and Exposition
, Cincinnati, OH,
1996
, pp.
3
8
.
41.
Guisbert
,
D. A.
, “
Precision and Accuracy of the Continuous Cooling Curve Test Method
,”
16th ASM Heat Treating Society Conference and Exposition
, Cincinnati, OH,
1996
, pp.
435
441
.
42.
Dakins
,
M. E.
,
Bates
,
C. E.
, and
Totten
,
G. E.
, “
Estimating Quench Severity with Cooling Curves
,”
Heat Treating
, Vol.
24
,
1992
, pp.
24
26
.
43.
Kuyucak
,
S.
,
Newcombe
,
P.
,
Bruno
,
P.
,
Grozdanich
,
R.
, and
Looney
,
G.
, “
Quench Time Measurement as a Process Control Tool—Part I
,”
Heat Treating Progress
,
02
2005
, pp.
60
63
.
44.
Liscic
,
B.
and
Totten
,
G. E.
, “
From G.M Quenchometer Via Cooling Curve Analysis to Temperature Gradient Method
,”
Proceedings of the 18th Conference of Heat Treating Symposium including the Lui Dai Memorial Symposium
,
ASM International
,
Materials Park, OH
,
1998
, pp.
601
609
.
45.
Chen
,
X.
,
Meekisho
,
L.
, and
Totten
,
G. E.
, “
Computer Aided Analysis of the Quenching Probe Test
,”
Proceedings of the 18th Conference of Heat Treating Symposium including the Lui Dai Memorial Symposium
,
ASM International
,
Materials Park, OH
,
1998
, pp.
545
551
.
46.
Kobasko
,
N. I.
,
Totten
,
G. E.
,
Webster
,
G. M.
, and
Bates
,
C. E.
, “
Comparison of Cooling Capacity of Aqueous Poly(Alkylene Glycol) Quenchants with Water and Oil
,”
Proceedings of the 18th Conference of Heat Treating Symposium including the Lui Dai Memorial Symposium
,
ASM International
,
Materials Park, OH
,
1998
, pp.
559
567
.
47.
Kim
,
H. K.
and
Oh
,
S. I.
, “
Evaluation of Heat Transfer Coefficient During Heat Treatment by Inverse Analysis
,”
J. Mater. Process. Technol.
 0924-0136, Vol.
112
,
2001
, pp.
157
165
.
48.
Raynaud
,
M.
and
Beck
,
J. V.
, “
Methodology for Comparison of Inverse Heat Conduction Methods
,”
Trans. ASME
 0097-6822, Vol.
110
,
1998
, pp.
30
37
.
49.
Buczek
,
A.
and
Telejko
,
T.
, “
Inverse Determination of Boundary Conditions During Boiling Water Heat Transfer in Quenching Operation
,”
J. Mater. Process. Technol.
 0924-0136, Vol.
155–156
,
2004
, pp.
1324
1329
.
50.
Hammad
,
J.
,
Mitsutake
,
Y.
, and
Monde
,
M.
, “
Movement of Maximum Heat Flux and Wetting Front During Quenching of Hot Cylindrical Block
,”
Int. J. Therm. Sci.
 1290-0729 https://doi.org/10.1016/j.ijthermalsci.2004.02.014, Vol.
43
,
2004
, pp.
743
752
.
51.
Beck
,
J. V.
, “
Nonlinear Estimation Applied to the Nonlinear Inverse Heat Conduction Problem
,”
Int. J. Heat Mass Transfer
 0017-9310 https://doi.org/10.1016/0017-9310(70)90044-X, Vol.
13
,
1970
, pp.
703
716
.
52.
Rao
,
D. N.
, “
Measurements of Dynamic Contact Angles in Solid-Liquid-Liquid Systems at Elevated Pressures and Temperatures
,”
Colloids Surf., A
 0927-7757, Vol.
206
,
2003
, pp.
203
216
.
53.
Marmur
,
A.
, “
Equilibrium Contact Angles: Theory and Measurement
,”
Colloids Surf., A
 0927-7757, Vol.
166
,
1996
, pp.
55
61
.
54.
Gu
,
Y.
and
Li
,
D.
, “
A Model for a Liquid Drop Spreading on a Solid Surface
,”
Colloids Surf., A
 0927-7757 https://doi.org/10.1016/S0927-7757(98)00358-6, Vol.
142
,
1998
, pp.
243
256
.
55.
Lam
,
C. N. C.
,
Kim
,
N.
,
Hui
,
D.
,
Kwok
,
D. Y.
,
Hair
,
M. L.
, and
Neumann
,
A. W.
, “
The Effect of Liquid Properties to Contact Angle Hysteresis
,”
Colloids Surf., A
 0927-7757 https://doi.org/10.1016/S0927-7757(01)00589-1, Vol.
189
,
2001
, pp.
265
278
.
56.
Gu
,
Y.
and
Li
,
D.
, “
A Model for a Liquid Drop Spreading on a Solid Surface
,”
Colloids Surf., A
 0927-7757 https://doi.org/10.1016/S0927-7757(98)00358-6, Vol.
142
,
1998
, pp.
243
256
.
57.
DeConinck
,
J.
,
DeRuijter
,
M. J.
, and
Voue
,
M.
, “
Dynamics of Wetting, Current Opinion in Colloid and Interface Science
,”
Curr. Opin. Colloid Interface Sci.
 1359-0294 https://doi.org/10.1016/S1359-0294(00)00087-X, Vol.
6
,
2001
, pp.
49
53
.
58.
Fernandes
,
P.
, and
Prabhu
,
K. N.
, “
Comparative Study of Heat Transfer and Wetting Characteristics of Conventional and Bioquenchants
,”
Int. J. Heat Mass Transfer
 0017-9310, Vol.
51
,
2008
, pp.
526
538
.
59.
Prabhu
,
K. N.
, and
Fernandes
,
P.
, “
Determination of Wetting Behaviour, Spread Activation Energy and Quench Severity of Vegetable Oils
,”
Metall. Mater. Trans. B
 1073-5615, Vol.
38
, No.
4
,
2007
, pp.
631
640
.
This content is only available via PDF.
You do not currently have access to this content.