Abstract

In hydrogen-related energy technologies, the selection of materials is critical since hydrogen can modify the initial microstructure and induce damage that could result in the reduction of mechanical properties and embrittlement. In this context, metallic amorphous alloys are viable candidates due to their high hydrogen solubility. Earlier studies demonstrated the positive interaction of hydrogen with amorphous alloys. However, similar to crystalline metals, embrittlement by hydrogen was also reported. In order to clarify the role of hydrogen in this class of alloys, we present an overview on the hydrogen interaction and embrittlement, encompassing results from published studies and from our own investigations on several Zr-, Ni-, and Ti-based amorphous alloy systems. The importance of the constituent elements and composition in determining the structure, hydrogenation kinetics, and hydrogen absorption capacity were brought out. The resistance to embrittlement varies upon the alloy system, constituent elements, and atomic packing of the amorphous alloy. In metalloid-free amorphous alloys, the bending ductility and tensile fracture strength of thin ribbons could be preserved up to a critical concentration beyond which hydrogen degradation occurs. The value of this critical concentration was found to vary from a few percent to about 45 at. % H. The mechanism of embrittlement induced by hydrogen was identified from the correlation of the observed changes in structural, thermal, and mechanical properties. It was found that hydrogen plays a prime role in altering the local atomic structure by reordering the nearest neighbor atomic configuration. The structural dilatation so produced was found to be the source of hydrogen-induced failure in these amorphous alloys. Also a “hydrogen concentration versus dilatation” map has been proposed, which would serve as a tool to predict the hydrogen-induced ductile-to-brittle transition in these alloys.

References

1.
Carter
,
T. J.
, and
Cornish
,
L. A.
, “
Hydrogen in Metals
,”
Eng. Failure Anal.
 1350-6307, Vol.
8
,
2001
, pp.
113
121
. https://doi.org/10.1016/S1350-6307(99)00040-0
2.
Tkachov
,
V. I.
, “
Hydrogen in Metals: Problems of Hydrogen Degradation of Metals
,”
Mater. Sci.
 0137-1339, Vol.
36
,
2000
, pp.
481
488
. https://doi.org/10.1023/A:1011385317508
3.
Chandra
,
D.
,
Reilley
,
J. J.
, and
Chellappa
,
R.
, “
Metal Hydrides for Vehicular Applications: The State of the Art
,”
JOM
 1047-4838, Vol.
58
,
2006
, pp.
26
32
. https://doi.org/10.1007/s11837-006-0005-0
4.
Khabibullaev
,
B. K.
, and
Skorodumov
,
B. G.
, “
Determination of Hydrogen in Materials
,” “
Determination of Hydrogen in Materials: Nuclear Physics Methods
,
Springer
,
Berlin
,
1989
, Vol.
117
, pp.
7
85
. https://doi.org/10.1007/BFb0044541
5.
Oriani
,
R. A.
, “
The Physical and Metallurgical Aspects of Hydrogen in Metals
,”
Fourth International Conference on Cold Fusion
, Palo Alto, CA, Lahaina, Maui, Dec. 6-9,
1993
, pp. 18–1–18–52.
6.
Oriani
,
R. A.
, “
A Brief Survey of Useful Information About Hydrogen in Metals
,”
International Symposium Cold Fusion and Advanced Energy Sources
, Belarusian State University, Minsk, Belarus, May 24–26,
1994
, Fusion Information Center, Salt Lake City, UT, pp.
155
158
.
7.
Kolachev
,
B. A.
, “
Hydrogen in Metals and Alloys
,”
Metal Sci. Heat Treat.
, Vol.
41
,
1999
, pp.
93
100
. https://doi.org/10.1007/BF02467692
8.
Cotterill
,
P.
, “
The Hydrogen Embrittlement of Metals
,”
Prog. Mater. Sci.
 0079-6425, Vol.
9
,
1961
, pp.
205
301
. https://doi.org/10.1016/0079-6425(61)90005-6
9.
Wriedt
,
H. A.
and
Oriani
,
R. A.
, “
Effect of Tensile and Compressive Elastic Stress on Equilibrium Hydrogen Solubility in a Solid
,”
Acta Metall.
 0001-6160, Vol.
18
,
1970
, pp.
753
760
. https://doi.org/10.1016/0001-6160(70)90039-8
10.
Sidorenko
,
V. M.
,
Kachmer
,
B. F.
, and
Borisova
,
N. S.
, “
Effect of Deformation and Stress on the Diffusion Characteristics of Hydrogen Diffusion in Metals
,”
Mater. Sci.
 0137-1339, Vol.
9
,
1975
, pp.
500
504
. https://doi.org/10.1007/BF00715513
11.
Pressouyre
,
G. M.
, “
A Classification of Hydrogen Traps in Steel
,”
Metall. Trans. A
 0360-2133, Vol.
10A
,
1979
, pp.
1571
1574
.
12.
Pressouyre
,
G. M.
, “
Trap Theory of Hydrogen Embritllement
,”
Acta Metall.
 0001-6160, Vol.
28
,
1980
, pp.
895
911
. https://doi.org/10.1016/0001-6160(80)90106-6
13.
Louthan
,
M. R.
, Jr.
,
Caskey
,
G. R.
, Jr.
,
Donovan
,
J. A.
, and
Rawl
,
D. E.
, Jr.
, “
Hydrogen Embrittlement of Metals
,”
Mater. Sci. Eng.
 0025-5416, Vol.
10
,
1972
, pp.
357
368
. https://doi.org/10.1016/0025-5416(72)90109-7
14.
Bond
,
G. M.
,
Robertson
,
I. M.
, and
Birnbaum
,
H. K.
, “
The Influence of Hydrogen on Deformation and Fracture Process of High-Strength Aluminium Alloys
,”
Acta Metall.
 0001-6160, Vol.
35
,
1987
, pp.
2289
2296
. https://doi.org/10.1016/0001-6160(87)90076-9
15.
Takai
,
K.
,
Shoda
,
H.
,
Suzuki
,
H.
, and
Nagumo
,
M.
, “
Lattice Defects Dominating Hydrogen-Related Failure of Metals
,”
Acta Mater.
 1359-6454, Vol.
56
,
2008
, pp.
5158
5167
. https://doi.org/10.1016/j.actamat.2008.06.031
16.
Alvarez
,
A. M.
,
Robertson
,
I. M.
, and
Birnbaum
,
K.
, “
Hydrogen Embrittlement of a Metastable β-Titanium Alloy
,”
Acta Mater.
 1359-6454, Vol.
52
,
2004
, pp.
4161
4175
. https://doi.org/10.1016/j.actamat.2004.05.030
17.
Salimon
,
A. I.
,
Ashby
,
M. F.
,
Brechet
,
Y.
, and
Greer
,
A. L.
, “
Bulk Metallic Glasses: What Are They Good For?
,”
Mater. Sci. Eng., A
 0921-5093, Vols.
375–377
,
2004
, pp.
385
388
.
18.
Inoue
,
A.
, “
Stabilization of Metallic Supercooled Liquid and Bulk Amorphous Alloys
,”
Acta Mater.
 1359-6454, Vol.
48
,
2000
, pp.
279
306
. https://doi.org/10.1016/S1359-6454(99)00300-6
19.
Johnson
,
W. L.
, “
Bulk Metallic Glasses: A New Engineering Material
,”
Curr. Opin. Solid State Mater. Sci.
 1359-0286, Vol.
1
,
1996
, pp.
383
386
. https://doi.org/10.1016/S1359-0286(96)80029-5
20.
Wang
,
W. H.
,
Dong
,
C.
, and
Shek
,
C. H.
, “
Bulk Metallic Glasses
,”
Mater. Sci. Eng. R.
 0927-796X, Vol.
44
,
2004
, pp.
45
89
. https://doi.org/10.1016/j.mser.2004.03.001
21.
Kirchheim
,
R.
, “
Hydrogen Solubility and Diffusivity in Defective and Amorphous Metals
,”
Prog. Mater. Sci.
 0079-6425, Vol.
32
,
1988
, pp.
261
325
. https://doi.org/10.1016/0079-6425(88)90010-2
22.
Jayaraj
,
J.
,
Kim
,
Y. C.
,
Kim
,
K. B.
,
Seok
,
H. K.
, and
Fleury
,
E.
, “
Corrosion Studies on Fe-Based Amorphous Alloys in Simulated PEM Fuel Cell Environment
,”
Sci. Technol. Adv. Mater.
 1468-6996, Vol.
6
,
2005
, pp.
282
289
. https://doi.org/10.1016/j.stam.2005.02.019
23.
Dolan
,
M.
,
Dave
,
N.
,
Morpeth
,
L.
,
Donelson
,
R.
,
Liang
,
D.
,
Kellam
,
M.
, and
Song
,
S.
, “
Ni-Based Amorphous Alloy Membranes for Hydrogen Separation at 400°C
,”
J. Membr. Sci.
 0376-7388, Vol.
326
,
2009
, pp.
549
555
. https://doi.org/10.1016/j.memsci.2008.10.030
24.
Li
,
X. G.
,
Otahara
,
T.
,
Takahashi
,
S.
,
Shoji
,
T.
,
Kimura
,
H. M.
, and
Inoue
,
A.
, “
Hydrogen Absorption and Corresponding Changes in Structure and Thermal Stability of Zr60 Al10Ni30 Amorphous Alloy
,”
J. Alloys Compd.
 0925-8388, Vol.
297
,
2000
, pp.
303
311
. https://doi.org/10.1016/S0925-8388(99)00614-3
25.
Spit
,
F. H. M.
,
Drijver
,
J. W.
, and
Radelaar
,
S.
, “
Hydrogen Sorption By The Metallic Glass Ni64 Zr36 and The Related Crystalline Compounds
,”
Scr. Metall.
 0036-9748, Vol.
14
,
1980
, pp.
1071
1076
. https://doi.org/10.1016/0036-9748(80)90208-2
26.
Kirchheim
,
R.
,
Sommer
,
F.
, and
Schluckebier
,
G.
, “
Hydrogen in Amorphous Metals-I
,”
Acta Metall.
 0001-6160, Vol.
30
,
1982
, pp.
1059
1068
. https://doi.org/10.1016/0001-6160(82)90002-5
27.
Fukai
,
Y.
, “
Hydrogen in Alloys
,”
The Metal-Hydrogen System
,
Springer-Verlag
,
Berlin
,
2005
, pp.
71
83
.
28.
Eliaz
,
N.
and
Eliezer
,
D.
, “
An Overview of Hydrogen Interaction with Amorphous Alloys
,”
Adv. Perform. Mater.
, Vol.
6
,
1999
, pp.
5
31
. https://doi.org/10.1023/A:1008748627295
29.
Libowitz
,
G. G.
and
Maeland
,
A. J.
, “
Interactions of Hydrogen with Metallic Glassy Alloys
,”
J. Less-Common Met.
 0022-5088, Vol.
101
,
1984
, pp.
131
143
. https://doi.org/10.1016/0022-5088(84)90091-2
30.
Chen
,
H. S.
, “
Glassy Metals
,”
Rep. Prog. Phys.
 0034-4885, Vol.
43
,
1980
, pp.
353
432
. https://doi.org/10.1088/0034-4885/43/4/001
31.
Miracle
,
D. B.
, “
A Structural Model for Metallic Glasses
,”
Nature Mater.
 1476-1122, Vol.
3
,
2004
, pp.
697
702
. https://doi.org/10.1038/nmat1219
32.
Sheng
,
H. W.
,
Luo
,
W. K.
,
Alamgir
,
F. M.
,
Bai
,
J. M.
, and
Ma
,
E.
Atomic Packing and Short-to-Medium-Range Order in Metallic Glasses
,”
Nature (London)
 0028-0836, Vol.
439
,
2006
, pp.
419
425
. https://doi.org/10.1038/nature04421
33.
Wakeda
,
M.
,
Shibutani
,
Y.
,
Ogata
,
S.
, and
Park
,
J. Y.
, “
Relationship Between Local Geometrical Factors and Mechanical Properties for Cu–Zr Amorphous Alloys
,”
Intermetallics
 0966-9795, Vol.
15
,
2007
, pp.
139
144
. https://doi.org/10.1016/j.intermet.2006.04.002
34.
Hara
,
S.
,
Sakaki
,
K.
,
Itoh
,
N.
,
Kimura
,
H. M.
,
Asami
,
K.
, and
Inoue
,
A.
, “
An Amorphous Alloy Membrane Without Noble Metals for Gaseous Hydrogen Separation
,”
J. Membr. Sci.
 0376-7388, Vol.
164
,
2000
, pp.
289
294
. https://doi.org/10.1016/S0376-7388(99)00192-1
35.
Yamaura
,
S.
,
Sakurai
,
M.
,
Hasegawa
,
M.
,
Wakoh
,
K.
,
Shimpo
,
Y.
,
Nishida
,
M.
,
Kimura
,
H.
,
Matsubara
,
E.
, and
Inoue
,
A.
, “
Hydrogen Permeation and Structural Features of Melt-Spun Ni–Nb–Zr Amorphous Alloys
,”
Acta Mater.
 1359-6454, Vol.
53
,
2005
, pp.
3703
3711
. https://doi.org/10.1016/j.actamat.2005.04.023
36.
Shimpo
,
Y.
,
Yamaura
,
S.
,
Nishida
,
M.
,
Kimura
,
H.
, and
Inoue
,
A.
, “
Development of Melt-Spun Ni–Nb–Zr–Co Amorphous Alloy for High-Performance Hydrogen Separating Membrane
,”
J. Membr. Sci.
 0376-7388, Vol.
286
,
2006
, pp.
170
173
. https://doi.org/10.1016/j.memsci.2006.09.031
37.
Yokoyama
,
M.
,
Yamaura
,
S.
,
Kimura
,
H.
, and
Inoue
,
A.
, “
Production of Metallic Glassy Bipolar Plates for PEM Fuel Cells By Hot Pressing in the Supercooled Liquid State
,”
Int. J. Hydrogen Energy
 0360-3199, Vol.
33
,
2008
, pp.
5678
5685
. https://doi.org/10.1016/j.ijhydene.2008.07.034
38.
Maeland
,
A. J.
,
Tanner
,
L. E.
, and
Libowitz
,
G. G.
, “
Hydrides in Metallic Glassy Alloys
,”
J. Less-Common Met.
 0022-5088, Vol.
74
,
1980
, pp.
279
285
. https://doi.org/10.1016/0022-5088(80)90163-0
39.
Harris
,
J. H.
,
Curtin
,
W. A.
, and
Tenhover
,
M. A.
, “
Universal Features of Hydrogen Absorption in Amorphous Transition-Metal Alloys
,”
Phys. Rev. B
 0163-1829, Vol.
36
,
1987
, pp.
5784
5797
. https://doi.org/10.1103/PhysRevB.36.5784
40.
Kim
,
J. J.
, and
Stevenson
,
D. A.
, “
Hydrogen Permeation Studies of Amorphous and Crystallized Ni–Ti alloys
,”
J. Non-Cryst. Solids
 0022-3093, Vol.
101
,
1988
, pp.
187
197
. https://doi.org/10.1016/0022-3093(88)90154-8
41.
Mizubayashi
,
H.
,
Shibasaki
,
M.
, and
Murayama
,
S.
, “
Local Strain Around Hydrogen in Amorphous Cu50Zr50 and Cu50Ti50
,”
Acta Mater.
 1359-6454, Vol.
47
,
1999
, pp.
3331
3338
. https://doi.org/10.1016/S1359-6454(99)00224-4
42.
Bowman
,
R. C.
, Jr.
,
Attalla
,
A.
,
Maeland
,
A. J.
, and
Johnson
,
W. L.
, “
Hydrogen Mobility in Crystalline and Amorphous Zr2PdHx
,”
Solid State Commun.
 0038-1098, Vol.
47
,
1983
, pp.
779
782
. https://doi.org/10.1016/0038-1098(83)90066-2
43.
Flis
,
J.
,
Ashok
,
S.
,
Stoloff
,
N. S.
, and
Duquette
,
D. J.
, “
Hydrogen Embrittlement of Amorphous Alloys Based on Iron and Nickel
,”
Acta Metall.
 0001-6160, Vol.
35
,
1987
, pp.
2071
2079
. https://doi.org/10.1016/0001-6160(87)90035-6
44.
Lynch
,
S. P.
, “
Hydrogen Embrittlement and Liquid-Metal Embrittlement in Nickel Single Crystals
,”
Scr. Metall.
 0036-9748, Vol.
13
,
1979
, pp.
1051
1056
. https://doi.org/10.1016/0036-9748(79)90202-3
45.
Eliaz
,
N.
and
Eliezer
,
E.
, “
Hydrogen Effects on an Amorphous Fe–Si–B Alloy
,”
Metall. Mater. Trans. A
 1073-5623, Vol.
31
,
2000
, pp.
2517
2526
. https://doi.org/10.1007/s11661-000-0196-x
46.
Lin
,
J. J.
and
Perng
,
T. P.
, “
Embrittlement of Amorphous Fe40Ni38Mo4B18 Alloy by Electrolytic Hydrogen
,”
Metall. Mater. Trans. A
 1073-5623, Vol.
26
,
1995
, pp.
197
201
. https://doi.org/10.1007/BF02669805
47.
Misra
,
R. D. K.
and
Aktar
,
D.
, “
Hydrogen Embrittlement of a Cobalt-Based Amorphous Alloy
,”
Mater. Lett.
 0167-577X, Vol.
3
,
1985
, pp.
500
502
. https://doi.org/10.1016/0167-577X(85)90099-0
48.
Schroeder
,
H. W.
and
Köster
,
U.
, “
“Hydrogen embrittlement of metallic glass
,”
J. Non-Cryst. Solids
 0022-3093, Vol.
56
,
1983
, pp.
213
218
. https://doi.org/10.1016/0022-3093(83)90470-2
49.
Nagumo
,
M.
and
Takahashi
,
T.
, “
Hydrogen Embrittlement of Some Fe-Based Amorphous Alloys
,”
Mater. Sci. Eng.
 0025-5416, Vol.
23
,
1976
, pp.
257
259
. https://doi.org/10.1016/0025-5416(76)90203-2
50.
Yamaura
,
S.
,
Hasegawa
,
M.
,
Kimura
,
H.
, and
Inoue
,
A.
, “
Effects of Hydrogen on The Mechanical Properties of Ti50 Ni25 Cu25 Metallic Glass
,”
Mater. Trans.
 1345-9678, Vol.
43
,
2002
, pp.
2543
2547
. https://doi.org/10.2320/matertrans.43.2543
51.
Zuo
,
Y.
and
Latanision
,
R. M.
, “
Effect of Strain Rate on Hydrogen Embrittlement Behavior of Amorphous NiCrFeSiB Alloy
,”
J. Mater. Sci. Technol.
 0861-9786, Vol.
12
,
1996
, pp.
105
108
.
52.
Suh
,
D.
and
Dauskardt
,
R. H.
, “
The Effects of Hydrogen on Deformation and Fracture of a Zr–Ti–Ni–Cu–Be bulk Metallic Glass
,”
Mater. Sci. Eng., A
 0921-5093, Vols.
319–321
,
2001
, pp.
480
483
.
53.
Suh
,
D.
,
Asoka-kumar
,
P.
, and
Dauskardt
,
R. H.
, “
The Effects of Hydrogen on Viscoelastic Relaxation in Zr–Ti–Ni–Cu–Be Bulk Metallic Glasses: Implications for Hydrogen Embrittlement
,”
Acta Mater.
 1359-6454, Vol.
50
,
2002
, pp.
537
551
. https://doi.org/10.1016/S1359-6454(01)00359-7
54.
Taylor
,
G.
, “
The Instability of Liquid Surfaces when Accelerated in a Direction Perpendicular to their Planes. I
,”
Proc. R. Soc. London, Ser. A
 0950-1207, Vol.
201
,
1950
, pp.
192
196
. https://doi.org/10.1098/rspa.1950.0052
55.
Guo
,
X. Q.
,
Louzguine
,
D. V.
,
Yamaura
,
S.
,
Ma
,
L. Q.
,
Sun
,
W.
,
Hasegawa
,
M.
, and
Inoue
,
A.
, “
Hydrogen Absorption in Ti–Zr–Ni–Cu Amorphous Alloy
,”
Mater. Sci. Eng., A
 0921-5093, Vol.
338
,
2002
, pp.
97
100
. https://doi.org/10.1016/S0921-5093(02)00091-6
56.
Menzel
,
D.
,
Niklas
,
A.
, and
Köster
,
U.
, “
Hydrogen in Titanium-Based Metallic Glasses
,”
Mater. Sci. Eng., A
 0921-5093, Vol.
133
,
1991
, pp.
313
315
.
57.
Molnar
,
A.
,
Katona
,
T.
,
Bartok
,
M.
,
Perczel
,
I. V.
,
Hegedus
,
Z.
, and
Kopasz
,
C. S.
, “
Structural Studies of Changes in Amorphous Cu61 Zr39 in the Dehydrogenation of 2-Propanol
,”
Mater. Sci. Eng.
 0025-5416, Vol.
134
,
1991
, pp.
1083
1086
. https://doi.org/10.1016/0921-5093(91)90930-L
58.
Nagy
,
I.
,
Bakonyi
,
I.
,
Lovas
,
A.
,
Toth-Kadar
,
E.
,
Tompa
,
K.
,
Hosso
,
M.
,
Cziraki
,
A.
, and
Forgassy
,
B.
, “
Hydrogen Sorption and Hydrogen-Induced Phase Separation in a Nearly Equiatomic Ni–Zr Amorphous Alloy
,”
J. Less-Common Met.
 0022-5088, Vol.
167
,
1991
, pp.
283
303
. https://doi.org/10.1016/0022-5088(91)90282-9
59.
Huett
,
V. T.
,
Zander
,
D.
,
Jastrow
,
L.
,
Majzoub
,
E. H.
,
Kelton
,
K. F.
, and
Koester
,
U.
, “
Gaseous Hydrogen Charging of Zr-Cu-Ni-Al Glasses and Quasicrystals
,”
J. Alloys Compd.
 0925-8388, Vol.
379
,
2004
, pp.
16
22
. https://doi.org/10.1016/j.jallcom.2004.02.008
60.
Ismail
,
N.
,
Gebert
,
A.
,
Uhlemann
,
M.
,
Eckert
,
J.
, and
Schultz
,
L.
, “
Effect of Hydrogen on Zr65Cu17.5 Al7.5 Ni10 Metallic Glass
,”
J. Alloys Compd.
 0925-8388, Vol.
314
,
2001
, pp.
170
176
. https://doi.org/10.1016/S0925-8388(00)01211-1
61.
Yamaura
,
S.
,
Shimpo
,
Y.
,
Okouchi
,
H.
,
Nishida
,
M.
,
Katija
,
O.
and
Inoue
,
A.
, “
The Effect of Additional Elements on Hydrogen Permeation Properties of Melt-Spun Ni–Nb–Zr Amorphous Alloys
,”
Mater. Trans.
 1345-9678, Vol.
45
,
2004
, pp.
330
333
. https://doi.org/10.2320/matertrans.45.330
62.
Jayalakshmi
,
S.
,
Fleury
,
E.
,
Lee
,
D. Y.
,
Chang
,
H. J.
, and
Kim
,
D. H.
, “
Hydrogenation of Ti50Zr25Co25 Amorphous Ribbons and Its Effect on Their Structural and Mechanical Properties
,”
Philos. Mag. Lett.
 0950-0839, Vol.
88
,
2008
, pp.
303
315
. https://doi.org/10.1080/09500830801978988
63.
Vasantha
,
V. S.
,
Chin
,
H. S.
, and
Fleury
,
E.
, “
Corrosion properties of Ni–Nb and Ni–Nb–M (M=Zr, Mo, Ta, and Pd) Metallic Glasses in Simulated PEMFC Conditions
,”
J. Phys.: Conf. Ser.
 1742-6588, Vol.
144
,
2009
, pp. 012008. https://doi.org/10.1088/1742-6596/144/1/012008
64.
Lee
,
M. H.
,
Lee
,
J. Y.
,
Bae
,
D. H.
,
Kim
,
W. T.
,
Sordelet
,
D. J.
, and
Kim
,
D. H.
, “
A Development of Ni-Based Alloys with Enhanced Plasticity
,”
Intermetallics
 0966-9795, Vol.
12
,
2004
, pp.
1133
1137
. https://doi.org/10.1016/j.intermet.2004.02.004
65.
Massalski
,
T. B.
,
Woychik
,
C. G.
, and
Dutkiewics
,
J.
, “
Solidification Structures in Rapidly Quenched Cu–Ti–Zr Alloys
,”
Metall. Trans. A
 0360-2133, Vol.
19
,
1988
, pp.
1853
1860
. https://doi.org/10.1007/BF02645155
66.
de Boer
,
F. R.
,
Boom
,
R.
,
Mattens
,
W. C. M.
,
Miedema
,
A. R.
, and
Niessen
,
A. K.
,
Cohesion in Metals, Transition metal Alloys
, 2nd. ed.,
Elsevier Science Publishers B.V.
,
Amsterdam
,
1989
, p. 750.
67.
Jayalakshmi
,
S.
,
Kim
,
K. B.
,
Cho
,
Y. W.
, and
Fleury
,
E.
, “
Ti-Based Amorphous Alloys and Composites as Potential Candidate Materials for Energy Applications
,”
Solid State Phenom.
 1012-0394, Vols.
124–126
,
2007
, pp.
915
918
. https://doi.org/10.4028/www.scientific.net/SSP.124-126.915
Jayalakshmi
,
S.
,
Ahn
,
J. P.
,
Kim
,
K. B.
, and
Fleury
,
E.
, “
Hydrogen Induced Amorphization and Embrittlement Resistance in Ti-Based In-Situ Formed Composite with bcc-Phase in an Amorphous Matrix
,”
J. Mater. Res.
 0884-2914, Vol.
22
,
2007
, pp.
428
436
. https://doi.org/10.1557/jmr.2007.0045
68.
Kim
,
W. J.
and
Kelton
,
K. F.
, “
Icosahedral-phase formation and stability in Ti-Zr-Co alloys
,”
Philos. Mag. Lett
, Vol.
74
,
1996
, pp.
439
447
. https://doi.org/10.1080/095008396179977
69.
Dos Santos
,
D. S.
and
de Miranda
,
P. E. V.
, “
Hydrogen Solubility in Amorphous and Crystalline Materials
,”
Int. J. Hydrogen Energy
 0360-3199, Vol.
23
,
1998
, pp.
1011
1017
. https://doi.org/10.1016/S0360-3199(98)00025-1
70.
Gibbons
,
P. C.
,
Henning
,
R. G.
,
Huett
,
V. T.
, and
Kelton
,
K. F.
, “
Ti–Zr–Ni and Ti–Hf–Ni Quasicrystals and Approximants as Hydrogen Storage Alloys
,”
J. Non-Cryst. Solids
 0022-3093, Vols.
334–335
,
2006
, pp.
461
465
.
71.
Luborsky
,
F. E.
and
Walter
,
J. L.
, “
Stability of Amorphous Metallic Alloys
,”
J. Appl. Phys.
 0021-8979, Vol.
47
,
1976
, pp.
3648
3650
. https://doi.org/10.1063/1.323173
72.
Ashok
,
S.
,
Stoloff
,
N. S.
,
Glicksman
,
M. E.
, and
Slavin
,
T.
, “
Liquid Metal and Hydrogen Embrittlement of Amorphous Alloys
,”
Scr. Metall.
 0036-9748, Vol.
15
,
1981
, pp.
331
337
. https://doi.org/10.1016/0036-9748(81)90355-0
73.
Muňoz-Morris
,
M. A.
,
Surinach
,
S.
,
Varga
,
L. K.
,
Baro
,
M. D.
, and
Morris
,
D. G.
, “
The Influence of Composition and Low Temperature Annealing on Hardness and Ductility of Rapidly Solidified Al–Ni–Ce Alloys
,”
Scr. Mater.
 1359-6462, Vol.
47
,
2002
, pp.
31
37
. https://doi.org/10.1016/S1359-6462(02)00093-3
74.
Jayalakshmi
,
S.
,
Kim
,
K. B.
, and
Fleury
,
E.
Effect of Hydrogenation on the Structural, Thermal and Mechanical Properties of Zr50 Ni27Nb18Co5 Amorphous Alloy
,”
J. Alloys Compd.
 0925-8388, Vol.
417
,
2006
, pp.
195
202
. https://doi.org/10.1016/j.jallcom.2005.07.076
75.
Suh
,
D.
and
Dauskardt
,
R. H.
, “
Hydrogen Effects on the Mechanical and Fracture Behavior of a Zr–Ti–Ni–Cu–Be Bulk Metallic Glass
,”
Scr. Mater.
 1359-6462, Vol.
42
,
2000
, pp.
233
240
. https://doi.org/10.1016/S1359-6462(99)00337-1
76.
Aoki
,
K.
,
Yanagitani
,
A.
,
Li
,
X. G.
, and
Masumoto
,
T.
, “
Amorphization of RFe2 Phases by Hydrogen Absorption
,”
Mater. Sci. Eng.
 0025-5416, Vol.
97
,
1988
, pp.
35
38
. https://doi.org/10.1016/0025-5416(88)90007-9
77.
Aoki
,
K.
, “
Amorphous Phase Formation by Hydrogen Absorption
,”
Mater. Sci. Eng., A
 0921-5093, Vols.
304–306
,
2001
, pp.
45
53
.
78.
Kim
,
Y. G.
and
Lee
,
J. Y.
, “
The Mechanism of Hydrogen-Induced Amorphization in Intermetallic Compounds
,”
J. Alloys Compd.
 0925-8388, Vol.
187
,
1992
, pp.
1
7
. https://doi.org/10.1016/0925-8388(92)90514-A
79.
Jayalakshmi
,
S.
,
Park
,
S. O.
,
Kim
,
K. B.
, and
Fleury
,
E.
, “
Studies on Hydrogen Embrittlement in Zr-based and Ni-based amorphous Alloys
,”
Mater. Sci. Eng., A
 0921-5093, Vol.
449–451
,
2007
, pp.
920
923
.
80.
Eliaz
,
N.
,
Eliezer
,
D.
,
Abramov
,
E.
,
Zander
,
D.
, and
Koster
,
U.
, “
Hydrogen Evolution form Zr-based Amorphous and Quasicrystalline Alloys
,”
J. Alloys Compd.
 0925-8388, Vol.
305
,
2000
, pp.
272
281
. https://doi.org/10.1016/S0925-8388(00)00717-9
81.
Himitliiska
,
T.
,
Spassov
,
T.
, and
Dimitrov
,
N.
, “
Effect of SEM Electron-Beam on the Hydrogen Absorption of Pre-Charged Amorphous Cu33Ti67 Alloy
,”
Mater. Charact.
 1044-5803, Vol.
60
,
2009
, pp.
26
29
. https://doi.org/10.1016/j.matchar.2008.05.008
82.
Tal-Gutelmacher
,
E.
,
Eliezer
,
D.
, and
Eylon
,
D.
, “
The Effect of Low Fugacity Hydrogen in Duplex- and β-annealed Ti-6Al-4V Alloy
,”
Mater. Sci. Eng., A
 0921-5093, Vol.
381
,
2004
, pp.
230
236
. https://doi.org/10.1016/j.msea.2004.04.020
83.
Tal-Gutelmacher
,
E.
, and
Eliezer
,
D.
, “
Hydrogen Cracking in Titanium-Based Alloys
,”
J. Alloys Compd.
 0925-8388, Vols.
404–406
,
2005
, pp.
621
625
. https://doi.org/10.1016/j.jallcom.2005.02.098
84.
Tomita
,
M.
,
Yokoyama
,
K.
,
Asaoka
,
K.
, and
Sakai
,
J.
, “
Hydrogen Thermal Desorption Behavior of Ni–Ti Superleastic Alloy Subjected to Tensile Deformation After Hydrogen Charging
,”
Mater. Sci. Eng., A
 0921-5093, Vol.
476
,
2008
, pp.
308
315
. https://doi.org/10.1016/j.msea.2007.04.104
85.
Schuh
,
A. C.
,
Hufnagel
,
T. C.
, and
Ramamurty
,
U.
, “
Mechanical Behavior of Amorphous Alloys
,”
Acta Mater.
 1359-6454, Vol.
55
,
2007
, pp.
4067
4109
. https://doi.org/10.1016/j.actamat.2007.01.052
86.
Ramamurty
,
U.
,
Lee
,
M. L.
,
Basu
,
J.
, and
Li
,
Y.
, “
Embrittlement of a Metallic Glass Due to Low-Temperature Annealing
,”
Scr. Mater.
 1359-6462, Vol.
47
,
2002
, pp.
107
111
. https://doi.org/10.1016/S1359-6462(02)00102-1
87.
Murali
,
P.
, and
Ramamurty
,
U.
, “
Embrittlement of a Bulk Metallic Glass Due to Sub-Tg Annealing
,”
Acta Mater.
 1359-6454, Vol.
53
,
2005
, pp.
1467
1478
. https://doi.org/10.1016/j.actamat.2004.11.040
88.
Raghavan
,
R.
,
Murali
,
P.
, and
Ramamurty
,
U.
, “
On Factors Influencing the Ductile-to-Brittle Transition in a Bulk Metallic Glass
,”
Acta Mater.
 1359-6454, Vol.
57
,
2009
, pp.
3332
3340
. https://doi.org/10.1016/j.actamat.2009.03.047
89.
Zander
,
D.
,
Koester
,
U.
and
Khare
,
V.
, “
Hydrogen Induced Transformations in Zr–Cu–Ni–Al Quasicrystals
,”
J. Non-Cryst. Solids
 0022-3093, Vols.
334–335
,
2004
, pp.
247
252
. https://doi.org/10.1016/j.jnoncrysol.2003.11.051
90.
Mizubayashi
,
M.
,
Kaida
,
M.
,
Otsuka
,
S.
, and
Okuda
,
S.
, “
Effects of Annealing and Hydrogen Charging on The Elastic Property and the Specific Volume of Amorphous Cu50Zr50
,”
Acta Metall. Mater.
 0956-7151, Vol.
42
,
1994
, pp.
2099
2106
. https://doi.org/10.1016/0956-7151(94)90035-3
91.
Qiang
,
B.
,
Zhang
,
W.
,
Yamaura
,
S.
, and
Inoue
,
A.
, “
Thermal Stability and Hydrogen Permeation of Ni42Zr30Nb28−x Tax Amorphous Alloys
,”
Mater. Trans.
 1345-9678, Vol.
50
,
2009
, pp.
1236
1239
. https://doi.org/10.2320/matertrans.ME200804
92.
Jayalakshmi
,
S.
,
Choi
,
Y. G.
,
Kim
,
Y. C.
,
Kim
,
Y. B.
, and
Fleury
,
E.
, “
Hydrogenation Properties of Ni–Nb–Zr–Ta Amorphous Ribbons
,”
Intermetallics
 0966-9795 (accepted for publication).
93.
Jayalakshmi
,
S.
,
Fleury
,
E.
, and
Sordelet
,
D.
, “
High Temperature Properties of Hydrogenated Ti50Zr25Co25 Rapidly Quenched Alloys
,”
J. Phys.: Conf. Ser.
 1742-6588, Vol.
144
,
2009
, pp. 012120. https://doi.org/10.1088/1742-6596/144/1/012120
This content is only available via PDF.
You do not currently have access to this content.