Abstract

An experimental database containing multiaxial fatigue results for C35 steel with induced defects has been previously published [Billaudeau, T., Nadot, Y., and Bezine, G., “Multiaxial Fatigue Limit for Defective Materials: Mechanisms and Experiments,” Acta Mater., Vol. 52, 2004, pp. 3911–3920; Nadot, Y., and Billaudeau, T., “Multiaxial Fatigue Limit Criterion for Defective Materials,” Eng. Fract. Mech., Vol. 73, 2006, pp. 112–133; Gadouini, H., Nadot, Y., and Rebours, C., “Influence of Mean Stress on the Multiaxial Fatigue Behaviour of Defective Materials,” Int. J. Fatigue, Vol. 30, 2008, pp. 1623–1633]. Artificial defects, in a range of 100–900 μm, are introduced at the surface of fatigue samples. The database contains experimental fatigue results for different defect size and geometry, and multiaxial loading cases with different load ratios. In the present study, five models predicting the fatigue limit of materials with defects are compared. Each model is carefully presented, predictions are compared, and input data are discussed. It is shown that it is necessary to take account for the stress distribution around the defect in order to have a good prediction for a multiaxial case.

References

1.
Ammar
,
H. R.
,
Samuel
,
A. M.
, and
Samuel
,
F. H.
, “
Effect of Casting Imperfections on the Fatigue Life of 319-F and A356-T6 Al-Si Casting Alloys
,”
Mater. Sci. Eng., A
 0921-5093, Vol.
473
,
2008
, pp.
65
75
. https://doi.org/10.1016/j.msea.2007.03.112
2.
Nadot
,
Y.
,
Mendez
,
J.
, and
Ranganathan
,
N.
, “
Influence of Casting Defects on the Fatigue Limit of Nodular Cast Iron
,”
Int. J. Fatigue
 0142-1123, Vol.
26
,
2004
, pp.
311
319
. https://doi.org/10.1016/S0142-1123(03)00141-5
3.
Couper
,
M. J.
,
Neeson
,
A. E.
, and
Griffiths
,
J. R.
, “
Casting Defects and the Fatigue Behavior of an Aluminum Casting Alloy
,”
Fatigue Fract. Eng. Mater. Struct.
 8756-758X, Vol.
13
,
1990
, pp.
213
227
. https://doi.org/10.1111/j.1460-2695.1990.tb00594.x
4.
Crossland
,
B.
Effect of Large Hydrostatic Pressures on the Torsional Fatigue Strength of Fan Alloy Steel
,”
Proceedings of the International Conference on Fatigue of Metals
,
1956
, Institution of Mechanical Engineers, London, pp.
138
149
.
5.
Papadopoulos
,
O. V.
and
Papadopoulos
,
V. P.
, “
An Invariant Formulation of a Gradient Dependent Multiaxial High-Cycle Fatigue Criterion
,”
Eng. Fract. Mech.
 0013-7944, Vol.
55
,
1996
, pp.
513
528
. https://doi.org/10.1016/S0013-7944(96)00047-1
6.
Murakami
,
Y.
,
Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions
,
Elsevier
,
Oxford
,
2002
, p. 16.
7.
Gadouini
,
H.
,
Nadot
,
Y.
, and
Rebours
,
C.
, “
Influence of Mean Stress on the Multiaxial Fatigue Behaviour of Defective Materials
,”
Int. J. Fatigue
 0142-1123, Vol.
30
,
2008
, pp.
1623
1633
. https://doi.org/10.1016/j.ijfatigue.2007.11.010
8.
Susmel
,
L.
and
Taylor
,
D.
, “
Two Methods for Predicting the Multiaxial Fatigue Limits of Sharp Notches
,”
Fatigue Fract. Eng. Mater. Struct.
 8756-758X, Vol.
26
,
2003
, pp.
821
833
. https://doi.org/10.1046/j.1460-2695.2003.00683.x
9.
Susmel
,
L.
and
Lazzarin
,
P.
, “
A Bi-Parametric Modified Wöhler Curve for High Cycle Multiaxial Fatigue Assessment
,”
Fatigue Fract. Eng. Mater. Struct.
 8756-758X, Vol.
25
,
2002
, pp.
63
78
. https://doi.org/10.1046/j.1460-2695.2002.00462.x
10.
Taylor
,
D.
, “
Geometrical Effects in Fatigue: A Unifying Theoretical Model
,”
Int. J. Fatigue
 0142-1123, Vol.
21
,
1999
, pp.
413
420
. https://doi.org/10.1016/S0142-1123(99)00007-9
11.
Vallellano
,
C.
,
Mariscal
,
M. R.
,
Navarro
,
A.
, and
Dominguez
,
J.
, “
A Micromechanical Approach to Fatigue in Small Notches
,”
Fatigue Fract. Eng. Mater. Struct.
 8756-758X, Vol.
28
,
2005
, pp.
1035
1045
. https://doi.org/10.1111/j.1460-2695.2005.00942.x
12.
Billaudeau
,
T.
,
Nadot
,
Y.
, and
Bezine
,
G.
, “
Multiaxial Fatigue Limit for Defective Materials: Mechanisms and Experiments
,”
Acta Mater.
 1359-6454, Vol.
52
,
2004
, pp.
3911
3920
. https://doi.org/10.1016/j.actamat.2004.05.006
13.
Nadot
,
Y.
and
Billaudeau
,
T.
, “
Multiaxial Fatigue Limit Criterion for Defective Materials
,”
Eng. Fract. Mech.
 0013-7944, Vol.
73
,
2006
, pp.
112
133
. https://doi.org/10.1016/j.engfracmech.2005.06.005
14.
Nadot
,
Y.
,
Ranganathan
,
N.
,
Mendez
,
J.
, and
Beranger
,
A. S.
, “
A Study of Natural Cracks Initiated on Casting Defects by Crack Front Marking
,”
Scr. Mater.
 1359-6462, Vol.
37
,
1997
, pp.
549
553
. https://doi.org/10.1016/S1359-6462(97)00158-9
15.
Verreman
Y.
and
Espinosa
,
G.
, “
Mechanically Short Crack Growth Form Notches in a Mild Steel
,”
Fatigue Fract. Eng. Mater. Struct.
 8756-758X, Vol.
20
,
1997
, pp.
129
142
. https://doi.org/10.1111/j.1460-2695.1997.tb00273.x
16.
Chaboche
,
J. L.
and
Lemaitre
,
J.
,
Mécanique des Matériaux Solides
,
Dunod
,
Paris
,
1996
, p. 229.
17.
De Kacinczy
,
F.
, “
Effect of Small Defects on the Fatigue Properties of Medium Strength Cast Steel
,”
J. Iron Steel Inst., London
 0021-1567, Vol.
September
,
1970
, pp.
851
855
.
This content is only available via PDF.
You do not currently have access to this content.