Abstract

The drift of aerially applied crop protection and production materials is studied using a novel simulation-based design of experiments approach. Many factors that can potentially contribute to downwind deposition from aerial spray application are considered. This new approach can provide valuable information about the significant level of the impact from all factors and interactions among them that affect drift using simulation software such as AGDISP. The application efficiency, the total downwind drift, the cumulative downwind deposition between 30.48 m (100 ft) and 45.72 m (150 ft), and the deposition at 30.48 m (100 ft), 76.2 m (250 ft), and 152.4 m (500 ft) are established as the performance metrics. The most significant factors will be identified using statistical analysis based on simulation results, and suggestions for improvement will be made. Through preliminary study, the new simulation-based method has shown the potential for statistic analysis without conducting time-consuming field experiments. The new method can be used to search for the optimal spray conditions, which could be used to generate guidelines for applicators to achieve an optimal spray result. The effective use of simulation tool through the identification of significant factors can greatly simplify the field study.

References

1.
Arvidsson
,
T.
, “
Spray Drift as Influenced by Meteorological and Technical Factors. A Methodological Study
,”
Acta Universitatis Agriculturae Sueciae, Agraria
, Vol.
71
,
1997
, pp.
144
148
.
2.
Bird
,
S. L.
, “
A Compilation of Aerial Spray Drift Field Study Data for Low-Flight Agricultural Application of Pesticides
,”
Environmental Fate of Agrochemicals: A Modern Perspective
,
M. L.
Leng
,
E. M. K.
Loevey
, and
P. L.
Zubkoff
, Eds.,
Lewis Publishers
,
Chelsea, MI
,
1995
.
3.
Fritz
,
B.
,
Hoffmann
,
W.
,
Lan
,
Y.
,
Thomson
,
S.
, and
Huang
,
Y.
, “
Low-Level Atmospheric Temperature Inversions: Characteristics and Impacts on Aerial Applications
,”
Agric. Eng. Int.: CIGR Ej.
,
2008
(submitted).
4.
Ganzlemeier
,
H.
,
Rautmann
,
D.
,
Spangenberg
,
R.
,
Streloke
,
M.
,
Herrmann
,
M.
,
Wenzelburger
,
H.
, and
Walter
,
H.
,
Studies on the Spray Drift of Plant Protection Products
,
Blackwell Wissenschafts-Verlag GmbH
,
Berlin
,
1995
.
5.
Hewitt
,
A. J.
,
Johnson
,
D.
,
Fish
,
J. D.
,
Hermansky
,
C. G.
, and
Valcore
,
D. L.
, “
The Development of the Spray Drift Task Force Database on Pesticide Movements for Aerial Agricultural Spray Applications
,”
Envir. Toxicol. Chem.
 0730-7268, Vol.
21
(
3
),
2002
, pp.
648
658
. https://doi.org/10.1002/etc.5620210326
6.
Maber
,
J.
,
Dewar
,
P.
,
Praat
,
J. P.
, and
Hewitt
,
A. J.
, “
Real Time Spray Drift Prediction
,”
Acta Hort.
Vol.
566
,
2001
, pp.
493
498
.
7.
Pasquill
,
F.
, “
The Estimation of the Dispersion of Windborne Material
,”
Meteorol. Mag.
 0026-1149, Vol.
90
(
1061
),
1961
, pp.
33
49
.
8.
Smith
,
D. B.
,
Bode
,
L. E.
, and
Gerard
,
P. D.
, “
Predicting Ground Boom Spray Drift
,”
Trans. ASAE
 0001-2351 Vol.
43
(
3
),
2000
, pp.
547
53
.
9.
Yates
,
W. E.
,
Akesson
,
N. B.
, and
Coutts
,
H. H.
, “
Evaluation of Drift Residues from Aerial Applications
,”
Trans. ASAE
 0001-2351, Vol.
9
(
3
),
1966
, pp.
389
393
.
10.
Yates
,
W. E.
,
Akesson
,
N. B.
, and
Coutts
,
H. H.
, “
Drift Hazards Related to Ultra-Low-Volume and Diluted Sprays Applied by Agricultural Aircraft
,”
Trans. ASAE
 0001-2351, Vol.
10
(
5
),
1967
, pp.
628
632
.
11.
Teske
,
M. E.
,
Bird
,
S. L.
,
Esterly
,
D. M.
,
Curbishley
,
T. M.
,
Ray
,
S. L.
, and
Perry
,
S. G.
, “
AgDRIFT®: A Model for Estimating Near-Field Spray Drift from Aerial Applications
,”
Envir. Toxicol. Chem.
 0730-7268, Vol.
21
(
3
),
2002
, pp.
659
671
. https://doi.org/10.1002/etc.5620210327
12.
Turner
,
D. B.
,
Workbook of Atmospheric Dispersion Estimates: An Introduction to Dispersion Modeling
, 2nd ed.,
CRC Press
,
Boca Raton, FL
,
1994
.
13.
Teske
,
M. E.
,
Thistle
,
H. W.
, and
Ice
,
G. G.
, “
Technical Advances in Modeling Aerially Applied Sprays
,”
Trans. ASABE
 0001-2351, Vol.
46
(
4
),
2003
, pp.
985
996
.
14.
ASABE S572.1 AUG99,
2009
, “
Spray Nozzle Classification by Droplet Spectra
,” ASABE, St. Joseph, MI.
15.
ASABE S561.1,
2004
, “
Procedures for Measuring Drift Deposits from Ground, Orchard, and Aerial Sprayers
,” ASABE, St. Joseph, MI.
16.
EPA-454/R-99-005,
2000
, “
Meteorological Monitoring Guidance for Regulatory Modeling Applications
,” United States Environmental Protection Agency Office of Air Quality Planning and Standards, Research Triangle Park, NC.
17.
OPPTS 840.1200, EPA 712-C-98-112, March
1998
, “
Spray Drift Test Guidelines—Spray Drift Field Deposition
,” United States Environmental Protection Agency Office of Prevention, Pesticides and Toxic Substances (OPPTS), Washington, DC.
18.
Bird
,
S. L.
,
Esterly
,
D. M.
, and
Perry
,
S. G.
, “
Atmospheric Pollutants and Trace Gases
,”
J. Environ. Qual.
 0047-2425, Vol.
25
(
5
),
1996
, pp.
1095
1104
.
19.
Fritz
,
B. K.
, “
Meteorological Effects on Deposition and Drift of Aerially Applied Sprays
,”
Trans. ASABE
 0001-2351, Vol.
49
(
5
),
2006
, pp.
1295
1301
.
20.
Hoffmann
,
W. C.
and
Salyani
,
M.
, “
Spray Deposition on Citrus Canopies Under Different Meteorological Conditions
,”
Trans. ASAE
 0001-2351, Vol.
39
(
1
),
1996
, pp.
17
22
.
21.
Miller
,
D. R.
,
Stoughton
,
T. E.
,
Steinke
,
W. E.
,
Huddleston
,
E. W.
, and
Ross
,
J. B.
, “
Atmospheric Stability Effects on Pesticide Drift from and Irrigated Orchard
,”
Trans. ASAE
 0001-2351, Vol.
43
(
5
),
2000
, pp.
1057
1066
.
22.
Thistle
,
H. W.
, “
The Role of Stability in Fine Pesticide Droplet Dispersion in the Atmosphere: A Review of Physical Concepts
,”
Trans. ASAE
 0001-2351, Vol.
43
(
6
),
2000
, pp.
1409
1413
.
23.
Praat
,
J. P.
,
Maber
,
J.
, and
Manktelow
,
D. W. L.
, “
The Effect of Canopy Development and Sprayer Position on Spray Drift from a Pipfruit Orchard
,”
NZ Plant Prot.
, Vol.
53
,
2000
, pp.
241
247
.
24.
Hewitt
,
A. J.
,
Valcore
,
D. L.
, and
Bryant
,
J. E.
, “
Spray Drift Task Force Atomization Droplet Size Spectra Measurements
,”
Proceedings ILASS-Americas 96
, San Francisco, CA,
1996
,
ILASS
,
Irvine, CA
.
25.
Hewitt
,
A. J.
,
Miller
,
P. C. H.
,
Dexter
,
R. W.
, and
Bagley
,
W. E.
, “
The Influence of Tank Mix Adjuvants on the Formation, Characteristics and Drift Potential of Agricultural Sprays
,”
International Symposium on Adjuvants for Agrochemicals
, Amsterdam, Netherlands,
2001
,
ISAA 2001 Foundation
,
Amsterdam, The Netherlands
.
26.
Miller
,
P. C. H.
,
Lane
,
A. G.
,
Walklate
,
P. J.
, and
Richardson
,
G. M.
, “
The Effect of Plant Structure on the Drift of Pesticides at Field Boundaries
,”
Aspects Appl. Bio.
, Vol.
57
,
2000
, pp.
75
82
.
27.
Hewitt
,
A. J.
,
Valcore
,
D. L.
, and
Barry
,
T.
, “
Analyses of Equipment, Weather and Other Factors Affecting Drift from Applications of Sprays by Ground Platforms
,”
Pesticide Formulations and Applications Systems: Twentieth Volume, ASTM STP 1400
,
ASTM International
,
West Conshohocken, PA
.
28.
Spray Drift Task Force
, A Summary of Aerial Application Studies,
1997
, http://www.agdrift.com/PDF_FILES/Aerial.pdf (Last accessed May 15, 2009).
29.
Akesson
,
N. B.
,
Yates
,
W. E.
,
Smith
,
N.
, and
Cowden
,
R. E.
, “
Rationalization of Pesticide Drift-Loss Accountancy by Regression Models
,” Paper No. 81-1006, American Society of Agricultural Engineers, St. Joseph, MI,
1981
.
30.
Bilanin
,
A. J.
,
Teske
,
M. E.
,
Barry
,
J. W.
, and
Ekblad
,
R. B.
, “
AGDISP: The Aircraft Spray Dispersion Model, Code Development and Experimental Validation
,”
Trans. ASAE
 0001-2351, Vol.
32
,
1989
, pp.
327
334
.
31.
Hewitt
,
A. J.
,
Maber
,
J.
, and
Praat
,
J. P.
, “
Drift Management Using Modeling and GIS Systems
,”
Proceedings of the World Congress of Computers in Agriculture and Natural Resources
, Iguacu Falls, Brazil,
2002
,
ASAE
,
St. Joseph, MI
, pp.
290
296
.
32.
von Kaul
,
P.
,
Gebauer
,
S.
,
Neukampf
,
R.
, and
Ganzelmeier
,
H.
, “
Modeling of Direct Drift of Plant Protection Products—Field Sprayers
,”
Nachrichtenbl. Deut. Pflanzenschutzd
, Vol.
48
(
2
),
1996
, pp.
21
31
.
33.
Potter
,
W. D.
,
Bi
.,
W.
,
Twardus
,
D.
,
Thistle
,
H. W.
,
Ghent
,
J.
,
Twery
,
M.
, and
Teske
,
M. E.
, “
A Genetic Algorithm for Aerial Spray Application Optimization
,” Paper No. 001053, American Society of Agricultural Engineers, ASAE, 2950 Niles Rd., St. Joseph, MI 49085-9659, USA,
2000
.
34.
Walklate
,
P. J.
, “
A Random-Walk Model for Dispersion of Heavy Particles in Turbulent Air Flow
,”
Boundary-Layer Meteorol.
 0006-8314, Vol.
39
,
1987
, pp.
175
190
. https://doi.org/10.1007/BF00121873
35.
Zhu
,
H.
,
Reichard
,
D. L.
,
Fox
,
R. D.
,
Ozkan
,
H. E.
, and
Brazee
,
R. D.
, “
DRIFTSIM, A Program to Estimate Drift Distances of Spray Droplets
,”
Appl. Eng. Agric.
 0883-8542, Vol.
11
(
3
),
1995
, pp.
365
369
.
36.
Taguchi
,
G.
,
System of Experimental Design
,
Unipub/Kraus/American Supplier Institute
,
Dearborn, MI
,
1987
.
37.
Mathews
,
P.
and
Mathews
,
P. G.
,
Design of Experiments with MINITAB
,
ASQ Quality Press
,
Milwaukee, WI
,
2004
.
38.
Montgomery
,
D. C.
,
Design and Analysis of Experiments
, 7th ed.,
John Wiley & Sons, Inc.
,
Hoboken, NJ
,
2008
.
39.
Zhan
,
W.
, “
Robust Design of Motor PWM Control Using Modeling and Simulation
,”
Advances in Computational Algorithms and Data Analysis
, Lecture Notes in Electrical Engineering, Vol.
14
,
S.-I.
Ao
,
B.
Rieger
, and
S.-S.
Chen
, Eds.,
Springer
,
New York
,
2008
, pp.
439
450
. https://doi.org/10.1007/978-1-4020-8919-0_30
40.
Minitab (
2009
), Minitab, Inc., State College, Pennsylvania.
41.
Meyer
,
R.
and
Krueger
,
D.
,
A Minitab Guide to Statistics
, 3rd ed.,
Prentice Hall
,
Upper Saddle River, NJ
,
2005
.
42.
Yates
,
W. E.
,
Akesson
,
N. B.
, and
Cowden
,
R. E.
, “
Criteria for Minimizing Drift Residues on Crops Downwind from Aerial Applications
,”
Trans. ASAE
 0001-2351, Vol.
17
(
4
),
1974
, pp.
627
632
.
43.
MATLAB (
1995
), The MathWorks, Inc., Natick, Massachusetts.
44.
Lenth
,
R. V.
, “
Quick and Easy Analysis of Unreplicated Factorials
,”
Technometrics
 0040-1706, Vol.
31
,
1989
, pp.
469
473
. https://doi.org/10.2307/1269997
This content is only available via PDF.
You do not currently have access to this content.