Abstract

Recent research has demonstrated that cracking can be monitored in concrete using conductive surface elements. One complication with using conductive surface elements is that each element requires a separate data acquisition channel. To overcome this hurdle, a frequency selective circuit (FSC) has been developed to rapidly and simultaneously interrogate the response of multiple conductive surface elements. The response of the FSC is analyzed using numerical methods and the use of the FSC is demonstrated using a pilot study in which conductive surface coatings were used to simultaneously monitor the time of cracking of multiple restrained concrete rings. Results indicate that the FSC can be used to monitor a large number of surface coating elements. This technology could be extended to other resistance based sensors. The FSC approach has the potential to be used for health monitoring of infrastructure elements where a large number of sensors are used.

References

1.
Pour-Ghaz
,
M.
,
Rajabipour
,
F.
,
Couch
,
J.
, and
Weiss
,
J.
, “
Modeling Fluid Transport in Cementitious Systems with Crack-Like (Notch) Geometries
,”
International RILEM Workshop on Concrete Durability and Service Life Planning
,
Haifa
,
Israel
,
2009
.
2.
Pour-Ghaz
,
M.
,
Rajabipour
,
F.
,
Couch
,
J.
, and
Weiss
,
J.
, “
Numerical and Experimental Assessment of Unsaturated Fluid Transport in Saw-Cut (Notched) Concrete Elements
,”
Material Science Modeling
,
American Concrete Institution
,
New Orleans, LA
,
2009
.
3.
Yang
,
Z.
,
Weiss
,
J.
, and
Olek
,
J.
, “
Interaction Between Micro-Cracking, Cracking, and Reduced Durability of Concrete: Developing Methods for Quantifying the Influence of Cumulative Damage in Life-Cycle Modeling
,”
Joint Transportation Research Program
,
Purdue Univ.
,
West Lafayette, IN
,
2005
.
4.
Karhunen
,
K.
,
Seppanen
,
A.
,
Lehikoinen
,
A.
,
Monteiro
,
P. J. M.
, and
Kaipio
,
J. P.
, “
Electrical Resistance Tomography Imaging of Concrete
,”
Cem. Concr. Res.
, Vol.
40
,
2010
, pp.
137
145
. https://doi.org/10.1016/j.cemconres.2009.08.023
5.
Seppanen
,
A.
,
Karhunen
,
K.
,
Lehikoinen
,
A.
,
Kaipio
,
J. P.
, and
Monteiro
,
P. J. M.
, “
Electrical Resistance Tomography Imaging of Concrete
Concrete Repair, Rehabilitation and Retrofitting II
,
M. G.
Alexander
,
H.-D.
Beushausen
,
F.
Dehn
, and
P.
Moyo
,
CRC Press
,
2009
, pp.
571
577
.
6.
Pour-Ghaz
,
M.
,
2004
,
Detecting Damage in Concrete Using Electrical Methods and Assessing Moisture Movement in Cracked Concrete
, Ph.D. Thesis,
Purdue Univ.
, West Lafayette, IN.
7.
Pour-Ghaz
,
M.
,
Kim
,
J.
,
Nadukuru
,
S. S.
,
O’Connor
,
S.
,
Michalowski
,
R. L.
,
Bradshaw
,
A.
,
Green
,
R. A.
,
Lynch
,
J. P.
,
Poursaee
,
A.
, and
Weiss
,
J.
, “
Using Electrical, Magnetic and Acoustic Sensors to Detect Damage in Segmental Concrete Pipes Subjected to Permanent Ground Displacement
,”
Cem. Concr. Compos.
, Vol.
33
, No.
7
,
2011
, pp.
749
762
.
8.
Pour-Ghaz
,
M.
,
Poursaee
,
A.
,
Spragg
,
R.
, and
Weiss
,
J.
, “
Experimental Methods to Detect and Quantify Damage in Restrained Ring Test
,”
J. Adv. Concr. Technol.
2011
(Accepted manuscript).
9.
Pour-Ghaz
,
M.
and
Weiss
,
J.
, “
Detecting the Time and Location of Cracks Using Electrically Conductive Surfaces
,”
Cem. Concr. Compos.
, Vol.
33
,
2011
, pp.
116
123
. https://doi.org/10.1016/j.cemconcomp.2010.09.015
10.
Gu
,
P.
,
Xie
,
P.
, and
Beaudoin
,
J. J.
, “
Some Applications of AC Impedance Spectroscopy in Cement Research
,”
Cem. Concr,. Aggregates
, Vol.
17
,
1995
, pp.
113
118
. https://doi.org/10.1520/CCA10136J
11.
Gu
,
P.
,
Xu
,
Z. Z.
,
Xie
,
P.
, and
Beaudoin
,
J. J.
, “
An AC Impedance Spectroscopy Study of Microcracking in Cement-Based Composites during Compressive Loading
,”
Cem. Concr. Res.
, Vol.
23
,
1993
, pp.
675
682
. https://doi.org/10.1016/0008-8846(93)90018-5
12.
Hou
,
T. C.
and
Lynch
,
J. P.
, “
Electrical Impedance Tomographic Methods for Sensing Strain Fields and Crack Damage in Cementitious Structures
,”
J. Intell. Mater. Syst. Struct.
, Vol.
20
,
2009
, pp.
1363
1379
. https://doi.org/10.1177/1045389X08096052
13.
Niemuth
,
M.
,
Using Impedance Spectroscopy to Detect Flaws in Concrete
, Civil Engineering, MSCE Thesis,
Purdue Univ.
,
2004
, West Lafayette, IN.
14.
Karhunen
,
K.
,
Seppanen
,
A.
,
Lehikoinen
,
A.
,
Blunt
,
J.
,
Kaipio
,
J. P.
, and
Monteiro
,
P. J. M.
, “
Electrical Resistance Tomography for Assessment of Cracks in Concrete
,”
ACI Mater. J.
, Vol.
107
,
2010
, pp.
523
531
.
15.
Peled
,
A.
,
Torrents
,
J. M.
,
Mason
,
T. O.
,
Shah
,
S. P.
, and
Garboczi
,
E. J.
, “
Electrical Impedance Spectra to Monitor Damage during Tensile Loading of Cement Composites
,”
ACI Mater. J.
, Vol.
98
,
2001
, pp.
313
322
.
16.
Torrents
,
J. M.
,
Easley
,
T. C.
,
Faber
,
K. T.
,
Mason
,
T. O.
, and
Shah
,
S. P.
, “
Evolution of Impedance Spectra during Debonding and Pullout of Single Steel Fibers From Cement
,”
J. Am. Ceram. Soc.
, Vol.
84
,
2001
, pp.
740
746
. https://doi.org/10.1111/j.1151-2916.2001.tb00735.x
17.
Raoufi
,
K.
,
Pour-Ghaz
,
M.
,
Poursaee
,
A.
, and
Weiss
,
J.
, “
Restrained Shrinkage Cracking in Concrete Elements: The Role of Substrate Bond on Crack Development
,”
ASCE J. Civ. Eng. Mater.
Vol.
23
, No.
6
,
2011
, pp.
895
902
.
18.
Mason
,
T. O.
,
Campo
,
M. A.
,
Hixson
,
A. D.
, and
Woo
,
L.Y.
, “
Impedance Spectroscopy of Fiber-Reinforced Cement Composites
,”
Cem. Concr. Compos.
, Vol.
24
,
2002
, pp.
457
465
. https://doi.org/10.1016/S0958-9465(01)00077-4
19.
Hixson
,
A. D.
,
Woo
,
L. Y.
,
Campo
,
M. A.
,
Mason
,
T. O.
, and
Garboczi
,
E. J.
, “
Intrinsic Conductivity of Short Conductive Fibers in Composites by Impedance Spectroscopy
,”
J. Electroceram.
Vol.
7
,
2001
, pp.
189
195
. https://doi.org/10.1023/A:1014487129118
20.
Torrents
,
J. M.
,
Mason
,
T. O.
,
Peled
,
A.
,
Shah
,
S. P.
, and
Garboczi
,
E.J.
, “
Analysis of the Impedance Spectra of Short Conductive Fiber-Reinforced Composites
,”
J. Mater. Sci.
, Vol.
36
,
2001
, pp.
4003
4012
. https://doi.org/10.1023/A:1017986608910
21.
Torrents
,
J. M.
,
Mason
,
T. O.
, and
Garboczi
,
E. J.
, “
Impedance Spectra of Fiber-Reinforced Cement-Based Composites - A Modeling Approach
,”
Cem. Concr. Res.
, Vol.
30
,
2000
, pp.
585
592
. https://doi.org/10.1016/S0008-8846(00)00211-8
22.
Barsoukov
,
E.
and
Macdonald
,
J. R.
,
Impedance Spectroscopy, Theory, Experiment, and Applications
, 2nd ed.,
Wiley
,
2005
,
Hoboken, NJ
.
23.
Moon
,
J. H.
,
Couch
,
J.
, and
Weiss
,
J.
, “
Preliminary Numerical Assessment of Microcracking Caused by Autogenous Shrinkage in a Heterogeneous System
,”
Measur., Monitor. Model. Concr. Prop.
, Part 3,
2006
, pp.
317
323
.
24.
Moon
,
J. H.
and
Weiss
,
J.
, “
Estimating Residual Stress in the Restrained Ring Test under Circumferential Drying
,”
Cem. Concr. Compos.
, Vol.
28
,
2006
, pp.
486
496
. https://doi.org/10.1016/j.cemconcomp.2005.10.008
25.
Hossain
,
A. B.
and
Weiss
,
J.
, “
Assessing Residual Stress Development and Stress Relaxation in Restrained Concrete Ring Specimens
,”
Cem. Concr. Compos.
, Vol.
26
,
2004
, pp.
531
540
. https://doi.org/10.1016/S0958-9465(03)00069-6
26.
Hossain
,
A. B.
,
Pease
,
B.
, and
Weiss
,
J.
, “
Quantifying Early-Age Stress Development and Cracking in Low Water-to-Cement Concrete - Restrained-Ring Test with Acoustic Emission
,” Concrete, Transportation Research Record No. 1834,
2003
, pp.
24
32
.
27.
Weiss
,
W. J.
,
Yang
,
W.
, and
Shah
,
S. P.
, “
Influence of Specimen Size/Geometry on Shrinkage Cracking of Rings
,”
J. Eng. Mech.
, Vol.
126
,
2000
, pp.
93
101
. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:1(93)
28.
ASTM Standard C-1581-09
,
2009
, “
Standard Test Method for Determining Age at Cracking and Induced Tensile Stress Characteristics of Mortar and Concrete under Restrained Shrinkage
,”
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
.
29.
ASTM Standard C-192
,
2007
, “
Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory
,”
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
.
This content is only available via PDF.
You do not currently have access to this content.