Abstract

A multiphase flow and heat transfer model is used to simulate the flow field and the heat transfer process of a metal specimen located in a flow during the quenching process. The applied bubble crowd model is able to investigate the separate boiling phases within one single numerical model approach. Simulation results are discussed for the quenching of a circular cylinder in a facing water flow. The initial flow velocity and the wall superheat (at temperatures above and below the Leidenfrost point) are varied to investigate their influence on the vapor formation and on the local as well as the averaged heat transfer rates. Characteristic differences between the heat transfer on the different surfaces of the cylinder due to their orientation in the flow field are discussed.

References

1.
Auracher
,
H.
and
Marquardt
,
W.
, “
Experimental Studies of Boiling Mechanisms in All Boiling Regimes Under Steady-State and Transient Conditions
,”
Int. J. Therm. Sci.
, Vol.
41
, No.
7
,
2002
, pp.
586
598
. https://doi.org/10.1016/S1290-0729(02)01352-2
2.
Auracher
,
H.
and
Marquardt
,
W.
, “
Heat Transfer Characteristics and Mechanisms Along Entire Boiling Curves Under Steady-State and Transient Conditions
,”
Int. J. Heat Fluid Flow
, Vol.
25
, No.
2
,
2004
, pp.
223
242
. https://doi.org/10.1016/j.ijheatfluidflow.2003.11.011
3.
Fernandes
,
P.
and
Prabhu
,
K. N.
, “
Effect of Section Size and Agitation on Heat Transfer During Quenching Of AISI 1040 Steel
,”
J. Mater. Process. Technol.
, Vol.
183
,
2007
, pp.
1
5
. https://doi.org/10.1016/j.jmatprotec.2006.08.028
4.
Howard
,
A. H.
and
Mudawar
,
I.
, “
Orientation Effects on Pool Boiling Critical Heat Flux (CHF) and Modeling of CHF for Near-Vertical Surfaces
,”
Int. J. Heat Mass Transfer
, Vol.
42
, No.
9
,
1999
, pp.
1665
1688
. https://doi.org/10.1016/S0017-9310(98)00233-6
5.
Kobasko
,
N. I.
,
Moskalenko
,
A. A.
,
Totten
,
G. E.
, and
Webster
,
G. M.
, “
Experimental Determination of the First and Second Critical Heat Flux Densities and Quench Process Characterization
,”
J. Mater. Eng. Perform.
, Vol.
6
, No.
1
,
1993
, pp.
93
101
. https://doi.org/10.1007/s11665-997-0037-9
6.
Mozumder
,
A. K.
,
Monde
,
M.
,
Woodfield
,
P. L.
, and
Islam
,
M. A.
, “
Maximum Heat Flux in Relation to Quenching of a High Temperature Surface with Liquid Jet Impingement
,”
Int. J. Heat Mass Transfer
, Vol.
49
,
2006
, pp.
2877
2888
. https://doi.org/10.1016/j.ijheatmasstransfer.2006.01.048
7.
Robidou
,
H.
,
Auracher
,
H.
,
Gardin
,
P.
, and
Lebouché
,
M.
, “
Controlled Cooling of a Hot Plate with a Water Jet
,”
Exp. Therm. Fluid Sci.
, Vol.
26
,
2002
, pp.
123
129
. https://doi.org/10.1016/S0894-1777(02)00118-8
8.
Celata
,
G. P.
, “
Boiling Heat Transfer and Boiling Equipment
,”
Proceedings of the International Advanced Summer Course
,
Darmstadt
,
Germany
, August 28–September 1,
2006
.
9.
Gradeck
,
M.
,
Kouachi
,
A.
,
Lebouche
,
M.
,
Volle
,
F.
,
Maillet
,
D.
, and
Borean
,
J.
, “
Boiling Curves in Relation to Quenching of a High Temperature Moving Surface with Liquid Jet Impingement
,”
Int. J. Heat Mass Transfer
, Vol.
52
,
2009
, pp.
1094
1104
. https://doi.org/10.1016/j.ijheatmasstransfer.2008.09.015
10.
Stich
,
A.
and
Tensi
,
H. M.
, “
Wärmeübertragung und Temperaturverteilung mit Benetzungsablauf beim Tauchkühlen
,”
HTM, Haerterei-Tech. Mitt.
, Vol.
50
, No.
1
,
1995
, p. 31.
11.
Liscic
,
B.
,
Tensi
,
H. M.
, and
Luty
,
W.
,
Theory and Technology of Quenching: A Handbook
,
Springer-Verlag
,
Berlin
,
1992
.
12.
Schuettenberg
,
S.
,
Hunkel
,
M.
,
Fritsching
,
U.
, and
Zoch
,
H.-W.
, “
Controlling of Distortion by Means of Quenching in Adapted Jet Fields
,”
Proceedings of the 1st International Conference on Distortion Engineering
,
Th.
Lübben
and
H.-W.
Zoch
, Eds.,
Bremen
,
Germany
, September 14–16,
2005
, pp.
389
396
.
13.
Schuettenberg
,
S.
,
Hunkel
,
M.
,
Fritsching
,
U.
, and
Zoch
,
H.-W.
, “
Controlling of Distortion by Means of Quenching in an Adapted Jet Fields
,”
Materialwiss. Werkstofftech.
Vol.
37
, No.
1
,
2006
, pp.
92
96
. https://doi.org/10.1002/mawe.v37:1
14.
Schuettenberg
,
S.
,
Krause
,
F.
,
Hunkel
,
M.
,
Zoch
,
H.
, and
Fritsching
,
U.
, “
Controlling of Work Piece Distortion by Quenching in Flexible Fluid Jet Fields
,”
HTM, Haerterei-Tech. Mitt.
, Vol.
62
,
2007
, pp.
167
172
.
15.
Bowring
,
R. W.
, “
Physical Model Based on Bubble Detachment and Calculation of Steam Voidage in the Subcooled Region of a Heated Channel
,”
HPR-10
,
Institutt for Atomenergi
,
Halden, Norway
.
16.
Koncar
,
B.
,
Kljenak
,
I
, and
Mavko
,
B.
, “
Modeling of Local Two-Phase Flow Parameters in Upward Subcooled Flow Boiling at Low Pressure
,”
Int. J. Heat Mass Transfer
, Vol.
47
,
2004
, pp.
1499
1513
. https://doi.org/10.1016/j.ijheatmasstransfer.2003.09.021
17.
Le Corre
,
J.-M.
,
Yao
,
S.-C.
, and
Amon
,
C. H.
, “
A Mechanistic Model of Critical Heat Flux Under Subcooled Flow Boiling Conditions for Application to One- and Three-Dimensional Computer Codes
,”
Nucl. Eng. Des.
, Vol.
240
,
2010
, pp.
235
244
. https://doi.org/10.1016/j.nucengdes.2008.12.007
18.
Tu
,
J. Y.
and
Yeoh
,
G. H.
, “
On Numerical Modeling of Low-Pressure Subcooled Boiling Flows
,”
Int. J. Heat Mass Transfer
,
45
,
2002
, pp.
1197
1209
. https://doi.org/10.1016/S0017-9310(01)00230-7
19.
Warrier
,
G. R.
and
Dhir
,
V. K.
, “
Heat Transfer and Wall Heat Flux Partitioning During Subcooled Flow Nucleate Boiling—A Review
,”
ASME J. Heat Transfer
,
2006
, Vol.
128
, pp.
1243
1256
. https://doi.org/10.1115/1.2349510
20.
Xiao
,
B.
and
Yu
,
B.
, “
A Fractal Analysis of Subcooled Flow Boiling Heat Transfer
,”
Int. J. Multiphase Flow
, Vol.
33
,
2007
, pp.
1126
1139
. https://doi.org/10.1016/j.ijmultiphaseflow.2007.05.001
21.
Analytis
,
G. T.
and
Yadigaroglu
,
G.
, “
Analytical Modeling of Inverted Annular Film Boiling
,”
Nucl. Eng. Des.
, Vol.
99
,
1987
, pp.
201
212
. https://doi.org/10.1016/0029-5493(87)90121-X
22.
Hammouda
,
N.
,
Groeneveld
,
D. C.
, and
Cheng
,
S. C
, “
Two-Fluid Modeling of Inverted Annular Film Boiling
,”
Int. J. Heat Mass Transfer
, Vol.
44
, No.
11
,
1997
, pp.
2655
2670
. https://doi.org/10.1016/S0017-9310(96)00278-5
23.
Yuan
,
K.
,
Ji
,
Y.
, and
Chung
,
J. N.
, “
Numerical modeling of cryogenic chilldown process in terrestrial gravity and microgravity
,”
Int. J. Heat Fluid Flow
, Vol.
30
,
2009
, pp.
44
53
. https://doi.org/10.1016/j.ijheatfluidflow.2008.10.004
24.
Xu
,
J. L.
,
Wong
,
T. N.
, and
Huang
,
X. Y.
, “
Two-Fluid Modelling for Low-Pressure Subcooled Flow Boiling
,”
Int. J. Heat Mass Transfer
, Vol.
49
,
2006
, pp.
377
386
. https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.051
25.
Anglart
,
H.
and
Nylund
,
O.
, “
CFD Application to Prediction of Void Distribution in Two-Phase Bubbly Flows in Rod Bundle
,”
Nucl. Sci. Eng.
, Vol.
163
,
1996
, pp.
81
98
. https://doi.org/10.1016/0029-5493(95)01160-9
26.
Tolubinskiy
,
V. I.
and
Kostanchuk
,
D. M.
, “
Vapour Bubbles Growth Rate and Heat Transfer Intensity at Subcooled Water Boiling
,”
Proceedings of the 4th International Heat Transfer Conference
, Vol.
5
, B-2.8,
Paris, France
, August 31,
1970
.
27.
Vergara-Hernández
,
H. J.
and
Hernández-Morales
,
B.
, “
A Novel Probe Design to Study Wetting Front Kinematics During Forced Convective Quenching
,”
Exp. Therm. Fluid Sci.
, Vol.
33
,
2009
, pp.
797
807
. https://doi.org/10.1016/j.expthermflusci.2009.02.007
This content is only available via PDF.
You do not currently have access to this content.