Abstract

Typically, the lifetime assessment of high temperature components, for which both creep and fatigue are principal damage mechanisms, involves (1) the determination of the stress/strain state at critical locations and (2) a numerical evaluation of the consequential damage condition. Until recently, there has not been a standard procedure specifically covering creep-fatigue testing practices. Creep-fatigue tests had been performed for many years, but the reliability and the form of the information generated was dependent on the expertise and specific interests of individual test laboratories. This situation is now resolved by the publication of a new ASTM standard based on an Electrical Power Research Institute (EPRI) led initiative. The way in which the guidance contained in this new standard specifically aims to provide creep-fatigue data requirements for defect-free component assessment is examined. Cyclic/hold tests, usually involving a simple cycle shape representative of the service transients experienced by the target component, are particularly informative in the provision of data to indicate the concurrent influences of cyclic loading on creep deformation characteristics and creep deformation on cyclic plastic response. The crack initiation endurances of such tests also provide the basis of creep-fatigue damage summation representations for a given material. Sequential creep-fatigue testing can be used to quantify the effects of prior cyclic deformation on creep rupture or prior creep deformation on fatigue endurance. The use of such test methods is also considered.

References

1.
R5,
2003
, “
An Assessment Procedure for the High Temperature Response of Structures
,” British Energy Generation, Ltd., Barnwood.
2.
Thomas
,
G.
and
Dawson
,
R. A. T.
, “
The Effect of Dwell Period and Cycle Type on High Strain Fatigue Properties of 1CrMoV Rotor Forgings at 500–550°C
,”
Proc. Intern. Conf. on Engineering Aspects of Creep
, Sheffield, Sept. 15–19,
1980
,
Institute of Mechanical Engineers
,
London, United Kingdom
, pp.
167
173
.
3.
Miller
,
D.
,
Priest
,
R. H.
, and
Ellison
,
E. G.
, “
A Review of Material Response and Life Prediction Techniques
,”
High Temp. Mater. Processes (N.Y., NY, U.S.)
 1093-3611, Vol.
6
, Nos.
3/4
,
1984
, pp.
155
194
.
4.
Bicego
,
V.
,
Fosati
,
C.
, and
Ragazonni
,
S.
, “
Low Cycle Fatigue Characterisation of a HP-IP Steam Turbine Rotor
,”
Low Cycle Fatigue, ASTM STP 942
,
H. D.
Solomon
,
G. R.
Halford
,
L. R.
Kaisand
, and
B. N.
Leis
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1988
, pp.
1237
1260
.
5.
Holdsworth
,
S. R.
, “
Creep-Fatigue in Steam Turbine Materials
,”
Proc. Sixth Intern. Conf. on Advances in Materials Technology for Fossil Power Plants
, Santa Fe, NM, Aug. 31–Sept. 3,
2010
,
EPRI/ASM
.
6.
ASME,
2001
, “
Rules for the Construction of Nuclear Facility Components, Class 1 Components in Elevated Temperature Service, Boiler and Pressure Code, Section III, Division 1—Subsection NH
,” American Society of Mechanical Engineers (ASME), New York.
7.
TRD 301,
1978
, “
Annex I—Design: Calculation for Cyclic Loading due to Pulsating Internal Pressure or Combined Changes of Internal Pressure and Temperature, Technical Rules for Steam Boilers
,” Technische Regeln für Dampfkessel.
8.
RCC-MR,
1985
, “
Design and Construction Rules for Mechanical Components of FBR Nuclear Islands, Section I–Nuclear Islands Components
,” AFCEN.
9.
Halford
,
G. R.
and
Manson
,
S. S.
, “
Life Prediction of Thermal Mechanical Fatigue Using Strain Range Partitioning
,”
Thermal Fatigue of Materials and Components, ASTM STP 612
,
D. A.
Spera
and
D. F.
Mowbray
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1976
, pp.
239
254
.
10.
Hoffelner
,
W.
, “
Creep-Fatigue Life Determination of Grade 91 Steel Using Strain-Range Separation Method
,”
Proc. ASME Pressure Vessel and Piping Conf. on Sustainable Energy for the Third Millennium
, Prague, July 26–30,
2009
,
American Society of Mechanical Engineers (ASME)
,
New York
.
11.
Prager
,
M.
, “
Extend Low Chrome Steel Fatigue Rules
,” Report No. STP-PT-027, ASME Standards Technology, LLC, New York,
2009
.
12.
Holdsworth
,
S. R.
, “
A Knowledge Based System for Creep-Fatigue Assessment
,”
Nucl. Eng. Des.
 0029-5493, Vol.
188
,
1999
, pp.
289
301
. https://doi.org/10.1016/S0029-5493(99)00037-0
13.
Chaboche
,
J. L.
, “
A Review of Some Plasticity and Viscoplasticity Constitutive Theories
,”
Int. J. Plast.
 0749-6419, Vol.
24
, No.
10
,
2008
, pp.
1642
1693
. https://doi.org/10.1016/j.ijplas.2008.03.009
14.
Ramberg
,
W.
and
Osgood
,
W. R.
, “
Description of Stress Strain Curves by Three Parameters
,” Report No. NACE TN-902, National Advisory Committee for Aeronautics (NACE), Washington,
1943
.
15.
Neuber
,
H.
, “
Theory of Stress Concentration for Shear-Strained Prismatical Bodies with Arbitrary Non-Linear Stress-Strain Law
,”
Trans. ASME (Series E)
, Vol.
28
,
1961
, pp.
544
550
.
16.
Holdsworth
,
S. R.
, “
Constitutive Equations for Creep Curves and Predicting Service
,”
Creep-Resistant Steels
,
F.
Abe
,
T.-U.
Kern
, and
R.
Viswanathan
, Eds.,
Woodhead Publ.
,
Cambridge
,
2008
, pp.
403
420
.
17.
Cocks
,
A. F. C.
and
Ashby
,
M. R.
, “
Intergranular Fracture During Power-Law Creep Under Multi-Axial Stress
,”
Met Sci.
, Vol.
14
,
1982
, pp.
395
402
.
18.
Feltham
,
P.
, “
Stress Relaxation in Copper and Alpha Brasses at Low Temperatures
,”
Philos. Mag.
 1478-6435, Vol.
6
,
1961
, pp.
259
270
. https://doi.org/10.1080/14786436108243315
19.
Mazza
,
E.
,
Hollenstein
,
M.
,
Holdsworth
,
S. R.
, and
Skelton
,
R. P.
, “
Notched Specimens Thermo-Mechanical Fatigue of a 1CrMoV Turbine Steel
,”
Nucl. Eng. Des.
 0029-5493, Vol.
234
,
2004
, pp.
11
24
. https://doi.org/10.1016/j.nucengdes.2004.06.009
20.
D. G.
Robertson
and
S. R.
Holdsworth
, Eds., “
Rupture Strength, Creep Strength and Relaxation Strength Values for Carbon-Manganese, Low Alloy Ferritic, High Alloy Ferritic and Austenitic Steels, Nickel Base Alloys and High Temperature Bolting Steels
,”
ECCC Data Sheets
,
European Technical Developments (ETD)
,
Leatherhead
,
2005
, http://www.ommi.co.uk/etd/eccc/advancedcreep/open.htm.
21.
Spindler
,
M. W.
, “
The Multiaxial and Uniaxial Creep Ductility of Type 304 Steel as a Function of Stress and Strain Rate
,”
Mater. High. Temp.
 0960-3409, Vol.
21
, No.
1
,
2004
, pp.
47
52
. https://doi.org/10.3184/096034004782750023
22.
Takahashi
,
Y.
, “
Study on Creep-Fatigue Evaluation Procedures for High Chromium Steels—Part I: Tests Results and Life Predictions Based on Measured Stress Relaxation
,”
Int. J. Pressure Vessels Piping
 0308-0161, Vol.
85
,
2008
, pp.
406
422
. https://doi.org/10.1016/j.ijpvp.2007.11.008
23.
Payten
,
W. M.
,
Dean
,
D. W.
, and
Snowden
,
K. U.
, “
A Strain Energy Density Method for the Prediction of Creep Fatigue Damage in High Temperature Components
,”
Mater. Sci. Eng., A
 0921-5093, Vol.
527
, Nos.
7–8
,
2010
, pp.
1920
1925
. https://doi.org/10.1016/j.msea.2009.11.028
24.
Coffin
,
L. F.
, “
A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal
,”
Trans ASME (Series A)
, Vol.
76
,
1954
, pp.
931
950
.
25.
Timo
,
D. P.
, “
Designing Turbine Component in Fatigue
,”
Proc. Intern. Conf. on Thermal Stresses and Fatigue
, Berkeley, United Kingdom, September
1969
,
Central Electricity Generating Board
,
UK
, pp.
453
469
.
26.
Dawson
,
R. A. T.
, “
Monitoring and Control of Thermal Stress and Component Life Expenditure in Steam Turbines
,”
Proc. Intern. Conf. on Modern Power Stations
,
1989
,
AIM
,
Liège
.
27.
Holdsworth
,
S. R.
, “
Prediction of Creep-Fatigue Behaviour at Stress Concentrations in 1CrMoV Rotor Steel
,”
Proc. Conf. on Life Assessment and Life Extension of Engineering Plant Structures and Components
, Churchill College, Cambridge, United Kingdom, September
1996
,
Engineering Materials Advisory Service
,
Warley, UK
, pp.
137
146
.
28.
Skelton
,
R. P.
and
Gandy
,
D.
, “
Creep-Fatigue Damage Accumulation and Interaction Diagram Based on Metallographic Interpretation of Mechanisms
,”
Mater. High. Temp.
 0960-3409, Vol.
25
, No.
1
,
2008
, pp.
27
54
. https://doi.org/10.3184/096034007X300494
29.
Thomas
,
G. B.
,
Hales
,
R.
,
Ramsdale
,
J.
,
Suhr
,
R. W.
, and
Sumner
,
G.
, “
A Code of Practice for Constant-Amplitude Low Cycle Fatigue Testing at Elevated Temperatures
,”
Fatigue Fract. Eng. Mater. Struct.
 8756-758X, Vol.
12
, No.
2
,
1989
, pp.
135
153
. https://doi.org/10.1111/j.1460-2695.1989.tb00519.x
30.
Hales
,
R.
,
Holdsworth
,
S. R.
,
O’Donnell
,
M. P.
,
Perrin
,
I. J.
, and
Skelton
,
R. P.
, “
A Code of Practice for the Determination and Interpretation of Cyclic Stress-Strain Data
,”
Mater. High. Temp.
 0960-3409, Vol.
19
, No.
4
,
2002
, pp.
165
185
. https://doi.org/10.3184/096034002783640332
31.
ISO 12106,
2003
, “
Metallic Materials—Fatigue Testing—Axial Strain Controlled Method
, International Organisation for Standardisation.
32.
ASTM E2714-09,
2009
, “
Standard Test Method for Creep-Fatigue Testing
,” Annual Book of ASTM Standards, Vol.
3.03
, ASTM International, West Conshohocken, PA.
33.
Holdsworth
,
S. R.
and
Gandy
,
D.
, “
Towards a Standard for Creep-Fatigue Testing
,”
Proc. Fifth Intern. Conf. on Advances in Materials Technology for Fossil Power Plants
, Marco Island, FL, Oct. 3–5,
2007
,
R.
Viswanathan
,
D.
Gandy
, and
K.
Coleman
, Eds.,
EPRI/ASM
, pp.
689
701
.
34.
EN 10319,
2003
, “
Metallic Materials—Tensile Stress Relaxation Testing
,” European Committee for Standardisation (CEN).
35.
Holdsworth
,
S. R.
, “
Creep-Fatigue of High Temperature Turbine Steels
,”
Mater. High. Temp.
 0960-3409, Vol.
18
, No.
4
,
2001
, pp.
261
265
. https://doi.org/10.3184/096034001783640441
36.
NRIM
, “
Elevated-Temperature Time-Dependent Low-Cycle Fatigue Properties of ASTM A470-8 (1Cr-1Mo-0.25V) Steel Forgings for Turbine Rotors and Shafts
,” NRIM Data Sheet No. 58, National Research Institute for Metals, Tokyo, Japan,
1987
.
37.
NRIM
, “
Time-Dependent Low-Cycle Fatigue Properties of ASTM A387 Grade 91 (9Cr-1Mo) Steel Plate for Pressure Vessels
,” NRIM Data Sheet No. 78, National Research Institute for Metals, Tokyo, Japan,
1993
.
38.
Leven
,
M. M.
, “
The Interaction of Creep and Fatigue for a Rotor Steel
,”
Exp. Mech.
 0014-4851, Vol.
13
, No.
9
,
1973
, pp.
353
372
. https://doi.org/10.1007/BF02324038
39.
Shinya
,
N.
,
Kyono
,
J.
,
Kushima
,
H.
, and
Yokoi
,
S.
, “
Effect of Creep Damage on Fatigue Life of Cr-Mo-V Steel
,”
Trans. National Research Institute for Metals
, Vol.
29
, No.
2
,
1987
, pp.
115
123
.
40.
Granacher
,
J.
and
Scholz
,
A.
, “
Creep-Fatigue Resistance of Heat Resistant Steels Under Service-Type Long Term Conditions
,”
Proc. Third Intern. Conf. on Low Cycle Fatigue and Elasto-Plastic Behaviour of Materials
, Berlin,
1992
,
K.-T.
Rie
, Ed.,
Elsevier Appl. Sci
, pp.
235
241
.
41.
Binda
,
L.
,
Holdsworth
,
S. R.
, and
Mazza
,
E.
, “
Influence of Prior Cyclic Deformation on Creep Properties of 1CrMoV
,”
Mater. High. Temp.
 0960-3409, Vol.
27
, No.
1
,
2010
, pp.
21
27
. https://doi.org/10.3184/096034009X12602928724673
42.
Binda
,
L.
,
2010
, “
Advanced Creep Damage and Deformation Assessment of Materials Subject to Steady and Cyclic Loading at High Temperatures
,” DSc thesis,
Institut für Mechanische Systeme
, ETH, Zürich, DISS. ETH No. 18462.
This content is only available via PDF.
You do not currently have access to this content.