Abstract

Cooling rates of work pieces in heat treating processes heavily depend on the interfacial heat transfer coefficient (HTC) between work pieces and quenchants. Because the HTC plays an important role in the resulted distortion, residual stress, and mechanical property distributions, understanding how the HTC varies with respect to various influencing factors is of importance for an optimal quenching process. In this paper, the influencing factors such as air/gas velocity, pressure, temperature, gas mixture and part orientation, air/gas temperature, air humidity, surface roughness, oxide, and material to the variation of HTC are studied experimentally by using the Center for Heat Treating Excellence quenching system and theoretically by using empirical equations.

References

1.
Li
,
K.
,
Xiao
,
B.
, and
Wang
,
Q.
, “
Residual Stresses in As-Quenched Aluminum Castings
,”
SAE Int. J. Mater. Manufact.
, Vol.
1
(
1
),
2009
, pp.
725
731
.
2.
Rose
,
A.
,
Kessler
,
O.
, and
Hoffmann
,
F.
, “
Quenching Distortion of Aluminum Castings-Improvement by Gas Cooling
,”
Materialwiss. Werkstofftech.
 0933-5137, Vol.
37
(
1
),
2006
, pp.
116
121
. https://doi.org/10.1002/mawe.200500957
3.
Elkatatny
,
I.
,
Morsi
,
Y.
, and
Blicblau
,
A. S.
, “
Numerical Analysis and Experimental Validation of High Pressure Gas Quenching
,”
Int. J. Therm. Sci.
 1290-0729, Vol.
42
(
4
),
2003
, pp.
417
423
. https://doi.org/10.1016/S1290-0729(02)00042-X
4.
Li
,
Z.
,
Grandhi
,
R. V.
, and
Srinivasan
,
R.
, “
Distortion Minimization During Gas Quenching Process
,”
J. Mater. Process. Technol.
 0924-0136, Vol.
172
(
2
),
2006
, pp.
249
257
. https://doi.org/10.1016/j.jmatprotec.2005.10.018
5.
Irretier
,
A.
,
Kessler
,
O.
, and
Hoffmann
,
F.
, “
Dry and Clean Age Hardening of Aluminum Alloys by High-Pressure Gas Quenching
,”
J. Mater. Eng. Perform.
 1059-9495, Vol.
13
(
5
),
2004
, pp.
530
536
. https://doi.org/10.1361/10599490420601
6.
Huiping
,
L.
,
Guoqun
,
Z.
,
Shanting
,
N.
, and
Yiguo
,
L.
, “
Technologic Parameter Optimization of Gas Quenching Process Using Response Surface Method
,”
Comput. Mater. Sci.
 0927-0256, Vol.
38
(
4
),
2007
, pp.
561
570
. https://doi.org/10.1016/j.commatsci.2006.03.014
7.
Holman
,
J. P.
,
Heat Transfer
,
McGraw-Hill
,
New York
,
2002
, p. 665.
8.
Mills
,
A. F.
,
Heat and Mass Transfer
,
CRC Press
,
Irwin, MA
,
1995
, p. 1280.
9.
Wu
,
H. W.
and
Liu
,
M. C.
, “
Experimental Study of Convective Heat Transfer Response to Relative Humidity in Source Arrays
,”
Int. Commun. Heat Mass Transfer
 0735-1933, Vol.
23
(
8
),
1996
, pp.
1163
1172
. https://doi.org/10.1016/S0735-1933(96)00097-8
10.
Churchill
,
S.
and
Bernstein
,
M.
, “
A Correlating Equation for Forced Convection from Gases and Liquids to a Circular Cylinder in Crossflow
,”
Trans. ASME, Ser. C: J. Heat Transfer
 0022-1481, Vol.
99
,
1977
, pp.
300
306
. https://doi.org/10.1115/1.3450685
11.
Maniruzzaman
,
M.
,
Chaves
,
J.
, and
McGee
,
C.
, “
CHTE Quench Probe System: A New Quenchant Characterization System
,”
Fifth International Conference on Frontiers of Design and Manufacturing (ICFDM)
, Dalian, China,
2002
,
ICFDM2002 Program and Organizing Committee
,
Dalian, China
, pp.
619
625
.
12.
Ma
,
S.
,
Maniruzzaman
,
M.
, and
Chaves
,
J.
, “
The Effects of Surface Oxides on the Quenching Performance of AlSI 4140 Steel in Commercial Mineral Oils
,”
Proceedings of the 23rd ASM Heat Treating Society Conference
, Pittsburgh, PA,
2006
,
ASM International
,
Materials Park, OH
, pp.
296
303
.
13.
McGee
,
C.
,
Mchugh
,
J.
, and
Maniruzzaman
,
M.
, “
Gas Quenching of Steels: An Analysis of the Effects of Gas Composition and of Steel Types–4140 and 304
,”
First ASM International Surface Engineering Conference and the 13th IFHTSE Congress
, Columbus, OH,
2003
,
ASM International
,
Materials Park, OH
, pp.
457
463
.
14.
Ma
,
S.
,
Maniruzzaman
,
M.
, and
MacKenzie
,
D. S.
, “
A Methodology to Predict the Effects of Quench Rates on Mechanical Properties of Cast Aluminum Alloys
,”
Metall. Mater. Trans. B
 1073-5615, Vol.
38
(
4
),
2007
, pp.
583
589
. https://doi.org/10.1007/s11663-007-9044-3
15.
Sisson
,
R. D. J.
,
Chaves
,
J.
, and
Maniruzzaman
,
M.
, “
The Effect of Surface Finish on the Quenching Behavior of 4140 Steel in Mineral Oils
,”
21st ASM Heat Treating Society Conference
, Indianapolis, IN,
2002
,
ASM international
,
Materials Park, OH
, pp.
112
121
.
16.
Faura
,
F.
,
Campo
,
A.
, and
Zamora
,
B.
, “
A Mixture of Pure Gases that Produce Maximum Heat Transfer Characteristics for Quenching
,”
J. Mater. Eng. Perform.
 1059-9495, Vol.
7
(
3
),
1998
, pp.
420
424
. https://doi.org/10.1361/105994998770347873
17.
Totten
,
G. E.
,
Bates
,
C. E.
, and
Clinton
,
N. A.
,
Handbook of Quenchants and Quenching Technology
,
ASM International
,
Materials Park, OH
,
1993
, p. 514.
18.
Xiao
,
B.
,
Wang
,
G.
, and
Rong
,
Y.
, “
Hardenability and Distortion Control in High Pressure Hydrogen Quenching
,”
Int. J. Manufact. Res.
, Vol.
6
(
1
),
2011
, pp.
1
14
. https://doi.org/10.1504/IJMR.2011.037910
19.
The National Institute of Standards and Technology
, Thermophysical Properties of Hydrogen, Http://www.Boulder.Nist.gov/div838/Hydrogen/Properties/Properties.Htm (Last accessed May 15,
2009
).
20.
Innovative Nuclear Space Power and Propulsion Institute
, Hydrogen Properties Package, Http://www.Inspi.Ufl.edu/data/h_prop_package.Html, (Last accessed May 15,
2009
).
21.
The engineering toolbox
,
2005
, “The Engineering Toolbox,” Http://www.Engineeringtoolbox.com/nitrogen-d_1421.Html (Last accessed May 15, 2009).
22.
Laumen
,
C.
,
Midea
,
S. I.
, and
Lubben
,
T.
, “
Measured Heat Transfer Coefficients by Using Hydrogen as Quenchant in Comparison with Helium and Nitrogen
,”
Accelerated Cooling/Direct Quenching of Steels
,
ASM International
,
Materials Park, OH
,
1997
, pp.
199
206
.
23.
Chaffotte
,
F.
,
Domergue
,
D.
, and
Kazi
,
S.
, “
Optimizing Gas Quenching Technology Through Modeling of Heat Transfer
,”
Ind. Heat.
 0019-8374, Vol.
72
(
11
),
2005
, pp.
49
53
.
24.
Giacobbe
,
F.
, “
Heat Transfer Capability of Selected Binary Gaseous Mixtures Relative to Helium and Hydrogen
,”
Appl. Therm. Eng.
 1359-4311, Vol.
18
(
3–4
),
1998
, pp.
199
206
. https://doi.org/10.1016/S1359-4311(97)00019-7
25.
Lubben
,
T.
,
Hoffmann
,
F.
, and
Mayr
,
P.
, “
The Uniformity of Cooling in High-Pressure Gas Quenching
,”
Heat Treat. Met.
 0305-4829, Vol.
27
(
3
),
2000
, pp.
57
61
.
26.
Kowalewski
,
J.
,
Korecki
,
M.
, and
Olejnik
,
J.
, “
Next-Generation HPQ Vacuum Furnace
,”
Heat Treating Progress
, Vol.
8
(
5
),
2008
, pp.
39
44
.
27.
Stratton
,
P.
and
Ho
,
D.
, “
Individual Component Gas Quenching
,”
Fifth ASM Heat Treatment and Surface Engineering Conference in Europe and the Third International Conference on Heat Treatment with Atmospheres
, Gothenburg, Sweden,
2000
,
ASM International
,
Materials Park, OH
, pp.
367
375
.
28.
Still
,
M.
,
Venzke
,
H.
, and
Durst
,
F.
, “
Influence of Humidity on the Convective Heat Transfer from Small Cylinders
,”
Exp. Fluids
 0723-4864, Vol.
24
(
2
),
1998
, pp.
141
150
. https://doi.org/10.1007/s003480050161
29.
Wang
,
G.
,
Xiao
,
B.
, and
Zhang
,
L.
, “
Heat Transfer Coefficient Study for Air Quenching by Experiment and CFD Modeling
,”
137th Annual Meeting and Exhibition. Materials Characterization, Computation and Modeling
, New Orleans, LA,
2008
,
TMS (The Minerals, Metals and Materials Society)
,
Warrendale, PA
, Vol.
2
, pp.
271
276
.
This content is only available via PDF.
You do not currently have access to this content.