Abstract

The American Society for Testing and Materials (ASTM), through its Committee E08 on Fatigue and Fracture subcommittee E08.05 on Creep-Fatigue Crack Formation, has recently developed a new standard for creep-fatigue testing (ASTM E2714-09). This paper describes the plans and preliminary results from a round-robin being presently conducted in support and verification of this new standard. The choice of the test material (ASTM Grade P91), the design of the round-robin test matrix, and a machining plan for the specimens are described. The results of microstructural analysis, tensile testing, and creep deformation and rupture testing are also presented along with some preliminary results from creep-fatigue testing. A new analytical model for representing the creep deformation characteristics of this material is also presented and evaluated using the creep data generated as part of the round-robin program. The results of the round-robin creep-fatigue testing will be used to make appropriate modifications to the test standard.

References

1.
ASTM E2714-09, “
Standard Test Method for Creep-Fatigue Testing
,” Annual Book of ASTM Standards, Vol.
03.01
, ASTM International, West Conshohocken, PA.
2.
Parker
,
J.
(P91 material offered by Kent K. Coleman, EPRI) private communication,
2009
.
3.
ASTM A335–10b,“
Standard Specification for Seamless Ferritic Alloy-Steel Pipe for High-Temperature Service
,” Annual Book of ASTM Standards, Vol.
01.01
, ASTM International, West Conshohocken, PA.
4.
ASTM A213–10a, “
Standard Specification for Seamless Ferritic and Austenitic Alloy-Steel Boiler, Superheater, and Heat-Exchanger Tubes
,” Annual Book of ASTM Standards, Vol.
01.01
, ASTM International, West Conshohocken, PA.
5.
Sikka
,
V. K.
,
Ward
,
C. T.
, and
Thomas
,
K. C.
, “
Modified 9Cr-1Mo Steel—An Improved Alloy for Steam Generator Application
,”
Ferritic Steels for High-Temperature Applications
,
A. K.
Khare
, Ed.,
Am. Soc. Met
,
Metals Park, OH
,
1983
, pp.
65
84
.
6.
Hald
,
J.
, “
Metallurgy and Creep Properties of New 9–12 % Cr Steel
,”
Steel Res.
 0177-4832, Vol.
67
,
1996
, pp.
369
374
.
7.
Hasegawa
,
Y.
,
Ohgami
,
M.
, and
Okamura
,
Y.
,
Advanced Heat Resistant Steel for Power Generation
,
R.
Viswanathan
and
J.
Nutting
, Eds.,
The University Press
,
Cambridge, United Kingdom
,
1999
, p. 655.
8.
ASTM E139–06, “
Standard Test Methods for Conducting Creep, Creep-Rupture, and Stress-Rupture Tests of Metallic Materials
,” Annual Book of ASTM Standards, Vol.
03.01
, ASTM International, West Conshohocken, PA.
9.
Fournier
,
B.
,
Sauzay
,
M.
,
Barcelo
,
F.
,
Rauch
,
E.
,
Renault
,
A.
,
Cozzika
,
T.
,
Dupuy
,
L.
, and
Pineau
,
A.
, “
Creep-Fatigue Interactions in a 9 Pct Cr-1 Pct Mo Martensitic Steel: Part II. Microstructural Evolutions
,”
Metall. Mater. Trans. A
 1073-5623, Vol.
40
,
2009
, pp.
330
341
. https://doi.org/10.1007/s11661-008-9687-y
10.
Larson
,
F. R.
and
Miller
,
J.
, “
A Time–Temperature Relationship for Rupture and Creep Stresses
,”
Trans. ASME
 0097-6822, Vol.
74
,
1952
, pp.
765
775
.
11.
Gold
,
M.
,
Tanzosh
,
J.
,
Swindeman
,
R. W.
,
Maziasz
,
P. J.
, and
Santella
,
M. L.
, “
Safe Use Limits for Advanced Ferritic Steels in Ultra-Supercritical Power Boilers
,” CRADA Final Report No. ORNL00-0598, U.S. Department of Energy, Washington, D.C.,
2003
, pp.
1
10
.
12.
Gaffard
,
V.
,
Besson
,
J.
, and
Gourgues-Lorenzon
,
A. F.
, “
Creep Failure Model of a Tempered Martensitic Stainless Steel Integrating Multiple Deformation and Damage Mechanisms
,”
Int. J. Fract.
 0376-9429, Vol.
133
,
2005
, pp.
139
166
. https://doi.org/10.1007/s10704-005-2528-8
13.
Sklenička
,
V.
,
Kucharova
,
K.
,
Svoboda
,
M.
,
Kloc
,
L.
,
Bursik
,
J.
, and
Kroupa
,
A.
, “
Long Term Creep Behavior of 9–12 % Cr Power Plant Steels
,”
Mater. Charact.
 1044-5803, Vol.
51
(
1
),
2003
, pp.
35
48
. https://doi.org/10.1016/j.matchar.2003.09.012
14.
Spigarelli
,
S.
,
Cerri
,
E.
,
Bianchi
,
P.
, and
Evangelista
,
E.
, “
Interpretation of Creep Behavior of a 9Cr-Mo-Nb-V-N (T91) Steel Using Threshold Stress Concept
,”
Mater. Sci. Technol.
 0267-0836, Vol.
15
,
1999
, pp.
1433
1440
.
15.
Orlová
,
A.
and
Čadek
,
J.
, “
Dislocation Structure in High Temperature Creep of Metals and Solid Solution
,”
Mater. Sci. Eng.
 0025-5416, Vol.
77
,
1986
, pp.
1
18
. https://doi.org/10.1016/0025-5416(86)90349-6
16.
Annigeri
,
R.
,
1997
, “
Life Prediction Methodology for Thermal-Mechanical Fatigue and Elevated Temperature Creep Design
,” Ph.D. dissertation,
Pennsylvania State University
, PA.
17.
Creep-Resistant Steels
,
F.
Abe
,
T.-U.
Kern
, and
R.
Viswanathan
, Eds.,
Woodhead Publishing Ltd., Abington Hall
,
Cambridge, United Kingdom
,
2008
, p. 700. https://doi.org/10.1533/9781845694012
18.
Holmström
,
S.
,
2010
, “
Engineering Tools for Robust Creep Modeling
,” Ph.D. dissertation,
The Aalto University School of Science and Technology
, Espoo, Finland.
This content is only available via PDF.
You do not currently have access to this content.