Abstract

In this paper a deterministic creep/fatigue accumulation model from simple sequential and repetitive creep and fatigue crack growth mechanisms for creep-brittle materials is developed. In the model the maximum stress intensity factor and stress intensity factor range can be used to describe, respectively, the creep and fatigue crack growth behaviors. The probabilistic behavior of the combined creep-fatigue can be calculated by direct integration of a joint log-normal probability density function or other methods. The Monte Carlo simulation method is used in this paper to analyze the probabilistic behavior of the derived deterministic creep-fatigue model and to estimate the reliability of a creep-fatigue correlation as introduced by the uncertainties in both creep and fatigue lives. Predicted results from this new crack growth method are compared with the bi-linear creep-fatigue interaction models as adopted by ASME Code Case N-47 and API579/ASME FFS, and the results are discussed.

References

1.
ASME Boiler and Pressure Vessel Code, Case Interpretations, Code Case N-47, American Society of Mechanical Engineers, New York,
1970
.
2.
API 579-1/ASME FFS-1 2007 Fitness-For-Service, The American Society of Mechanical Engineers and API, June 5,
2007
.
3.
Manson
,
S. S.
,
Halford
,
G. R.
, and
Hirschberg
,
M. H.
,
1971
, “
Creep-Fatigue Analysis by Strain-Range Partitioning
,”
Design for Elevated Temperature Environment
,
S. Y.
Zamrik
and
R. I.
Jetter
, Eds.,
ASME
,
New York
, pp.
12
28
.
4.
Yaguchi
,
M.
,
Nakamura
,
T.
,
Ishikawa
,
A.
, and
Ashada
,
Y.
, “
Creep-Fatigue Damage Assessment by Sequent Fatigue Straining
,”
Nucl. Eng. Des.
 0029-5493, Vol.
153
,
1996
, pp.
213
221
.
5.
Harlow
,
D. G.
, and
Delph
,
T. J.
, “
A Probabilistic Model for Creep—Fatigue Failure
,”
J. Pressure Vessel Technology
, Vol.
119
,
1997
, pp.
45
51
. https://doi.org/10.1115/1.2842265
6.
Mao
,
H.
and
Mahadevan
,
S.
, “
Reliability Analysis of Creep-Fatigue Failure
,”
Int. J. Fatigue
 0142-1123, Vol.
22
,
2000
, pp.
789
797
. https://doi.org/10.1016/S0142-1123(00)00046-3
7.
Mahadevan
,
S.
and
Mao
,
H.
, “
Probabilistic Fatigue-Creep Life Prediction of Composites
,”
J. Reinf. Plast. Compos.
 0731-6844, Vol.
23
,
2004
, pp.
361
371
. https://doi.org/10.1177/0731684404031653
8.
Haldar
,
A.
and
Mahadevan
,
S.
,
2000
,
Probability, Reliability, and Statistical Methods in Engineering Design
,
John Wiley and Sons
,
New York
.
9.
Lemaitre
,
J.
,
A Course on Damage Mechanics
, 2nd Rev.,
Springer
,
Berlin
,
1996
. https://doi.org/10.1007/978-3-642-18255-6
10.
Laird
,
C.
and
Smith
,
G. C.
, “
Crack Propagation in High Stress Fatigue
,”
Philos. Mag.
 1478-6435, Vol.
7
,
1962
, pp.
847
857
. https://doi.org/10.1080/14786436208212674
11.
Saxena
,
A.
,
Nonlinear Fracture Mechanics for Engineers
,
CRC Press LLC
,
Voca Raton, FL
,
1998
.
12.
Sugiura
,
R.
,
Yokobori
,
A. T.
, and
Tabuchi
,
M.
, “
Characterization of Structural Embrittlement of Creep Crack Growth for W-Added 12% Cr Ferritic Heat-Resistant Steel Related to the Multiaxial Stress
,”
J. Eng. Mater. Technol.
 0094-4289, Vol.
131
,
2009
, pp.
011004-1
011004-9
. https://doi.org/10.1115/1.3026544
13.
Fetami
,
A.
and
Yang
,
L.
, “
Cumulative Fatigue Damage and Life Prediction Theories: A Survey of the State of the Art for Homogeneous Materials
,”
Int. J. Fatigue
 0142-1123, Vol.
20
,
1998
, pp.
9
34
. https://doi.org/10.1016/S0142-1123(97)00081-9
14.
Manson
,
S. S.
and
Halford
,
G. R.
, “
Practical Implementation of the Double Linear Damage Rule and Damage Curve Approach for Treating Cumulative Fatigue Damage
,”
Int. J. Fract.
 0376-9429, Vol.
17
,
1981
, pp.
169
192
. https://doi.org/10.1007/BF00053519
15.
Grooteman
,
F. P.
, “
Advanced Stochastic Method for Probabilistic Analysis
,” NLR-TP-99398, National Aerospace Laboratory NLR, Amsterdam, Netherlands,
1999
.
16.
Abramowitz
,
M.
and
Stegun
,
I. A.
,
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
,
Dover Publications
,
New York
,
1972
.
17.
Box
,
G. E. P.
, and
Muller
,
M. E.
, “
A Note on the Generation of Random Normal Deviates
,”
Ann. Math. Stat.
 0003-4851, Vol.
29
,
1958
, pp.
610
611
. https://doi.org/10.1214/aoms/1177706645
18.
Delph
,
T. J.
and
Berger
,
D. L.
, “
A Probabilistic Lifetime Prediction Technique for Piping Under Creep Conditions
,”
J. Pressure Vessel Technology
, Vol.
132
,
2010
, pp. 051206. https://doi.org/10.1115/1.4001266
19.
Nikbin
,
K. M.
,
Yatomi
,
M.
,
Wasmer
,
K.
, and
Webster
,
G. A.
, “
Probabilistic Analysis of Creep Crack Initiation and Growth in Pipe Components
,”
Int. J. Press. Vessels Piping
, Vol.
80
,
2003
, pp.
585
595
. https://doi.org/10.1016/S0308-0161(03)00111-X
20.
Evens
,
J. L.
, “
Environment Assisted Crack Growth of Ni-Base Superalloys at Elevated Temperature
,” Ph.D. thesis,
University of Arkansas
, Fayetteville, AR,
2008
.
21.
Vasudevan
,
A. K.
and
Sadananda
,
K.
, “
Classification of Environmentally Assisted Fatigue Crack Growth Behavior
,”
Int. J. Fatigue
 0142-1123, Vol.
31
,
2009
, pp.
1696
1708
. https://doi.org/10.1016/j.ijfatigue.2009.03.019
This content is only available via PDF.
You do not currently have access to this content.