Abstract

The main goal of this study was to evaluate different corrosion measurement techniques in order to determine the most accurate methods for measuring the corrosion rate of steel bars in reinforced steel concrete. For this purpose, reinforced concrete specimens were cast and exposed to salt solution and the corrosion activity of the bars was investigated by half-cell potential, potentiostatic linear polarization resistance, galvanostatic pulse polarization, Electrochemical Impedance Spectroscopy, potentiodynamic cyclic polarization, and galvanodynamic polarization. The results obtained by the aforementioned methods were then compared with the actual mass loss of the steel bars due to corrosion (gravimetry test) and it shows that techniques based on applying potential are more reliable measuring techniques compared to those based on applying current.

References

1.
Weiermair
,
R.
,
Hansson
,
C. M.
,
Seabrook
,
P. T.
, and
Tullmin
,
M.
, “
Corrosion Measurements on Steel Embedded in High Performance Concrete Exposed to a Marine Environment
,”
Third CANMET/ACI International Conference on Concrete in Marine Environment
, New Brunswick, Canada,
1996
,
American Concrete Institute
,
St. Andrews by the Sea, NB, Canada
.
2.
Gepraegs
,
O. K.
and
Hansson
,
C. M.
, “
A Comparative Evaluation of Three Commercial Instruments for Field Measurements of Reinforcing Steel Corrosion Rates
,”
Electrochemical Techniques for Evaluating Corrosion Performance and Estimating Service-Life of Reinforced Concrete
,
ASTM International
,
West Conshohocken, PA
,
2004
.
3.
Poursaee
,
A.
and
Hansson
,
C. M.
, “
Galvanostatic Pulse Technique with the Current Confinement Guard Ring: The Laboratory and Finite Element Analysis
,”
Corros. Sci.
 0010-938X, Vol.
50
(
10
),
2008
, pp.
2739
2746
. https://doi.org/10.1016/j.corsci.2008.07.017
4.
Andrade
,
C.
and
Alonso
,
C.
, “
On-Site Measurements of Corrosion Rate of Reinforcements
,”
Constr. Build. Mater.
 0950-0618, Vol.
15
,
2001
, pp.
141
145
. https://doi.org/10.1016/S0950-0618(00)00063-5
5.
Soleymani
,
H. R.
and
Ismail
,
M. E.
, “
Comparing Corrosion Measurement Methods to Assess the Corrosion Activity of Laboratory OPC and HPC Concrete Specimens
,”
Cem. Concr. Res.
 0008-8846, Vol.
34
,
2004
, pp.
2037
2044
. https://doi.org/10.1016/j.cemconres.2004.03.008
6.
Poursaee
,
A.
and
Hansson
,
C. M.
, “
Potential Pitfalls in Assessing Chloride-Induced Corrosion of Steel in Concrete
,”
Cem. Concr. Res.
 0008-8846, Vol.
39
(
5
),
2009
, pp.
391
400
. https://doi.org/10.1016/j.cemconres.2009.01.015
7.
Spellman
,
D. L.
and
Stratfull
,
R. F.
, “
Laboratory Corrosion Test of Steel in Concrete
,” Report No. M&R 635116-3, California Division of Highways, State of California, Sacramento, CA,
1968
.
8.
Stratfull
,
R. F.
, “
Half-Cell Potential and the Corrosion of Steel in Concrete
,” Report No. CA-HY-MR-5116-7-72-42, California Division of Highways, State of California, Sacramento, CA,
1972
.
9.
ASTM C876-09,
2009
, “
Standard Test Method for Half-Cell Potentials of Uncoated Reinforcing Steel in Concrete
,” Annual Book of ASTM Standards, Vol.
3.02
, ASTM International, West Conshohocken, PA, pp.
446
451
.
10.
Stern
,
M.
and
Geary
,
A. L.
, “
Electrochemical Polarisation: I. A Theoretical Analysis of the Shape of Polarisation Curves
,”
J. Electrochem. Soc.
 0013-4651, Vol.
104
(
1
),
1957
, pp.
56
63
. https://doi.org/10.1149/1.2428496
11.
Andrade
,
C.
and
González
,
J. A.
, “
Quantitative Measurements of Corrosion Rate of Reinforcing Steels Embedded in Concrete Using Polarization Resistance Measurements
,”
Werkst. Korros.
 0043-2822, Vol.
29
,
1978
, pp.
515
519
. https://doi.org/10.1002/maco.19780290804
12.
Andrade
,
C.
,
Marcias
,
A.
,
Feliu
,
S.
,
Escudero
,
M. L.
, and
Gonzalez
,
J. A.
, “
Quantitative Measurement of the Corrosion Rate Using a Small Counter Electrode in the Boundary of Passive and Corroded Zones of a Long Concrete Beam
,”
Corrosion Rates of Steel in Concrete, ASTM STP 1065
,
N. S.
Berke
,
V.
Chaker
, and
D.
Whiting
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1990
. https://doi.org/10.1520/STP25020S
13.
Newton
,
C. J.
and
Sykes
,
J. M.
, “
A Galvanostatic Pulse Technique for Investigation of Steel Corrosion in Concrete
,”
Corros. Sci.
 0010-938X, Vol.
28
(
11
),
1988
, pp.
1051
1074
. https://doi.org/10.1016/0010-938X(88)90101-1
14.
Klinghoffer
,
O.
, “
In Situ Monitoring of the Reinforcement Corrosion by Means of Electrochemical Methods
,”
Nord. Concr. Res.
, Vol.
16
,
1995
, pp.
1
13
.
15.
Elsener
,
B.
,
Klinghoffer
,
O.
,
Frolund
,
T.
,
Rislund
,
E.
,
Schiegg
,
Y.
, and
Böhni
,
H.
, “
Assessment of Reinforcement Corrosion by Means of Galvanostatic Pulse Technique
,”
Repair of Concrete Structures
,
A.
Blankvoll
, Ed.,
Svolvær, Norway
,
1997
, pp.
391
400
.
16.
Wojtas
,
H.
, “
Determination of Corrosion Rate of Reinforcement with a Modulated Guard Ring Electrode; Analysis of Errors Due to Lateral Current Distribution
,”
Corros. Sci.
 0010-938X Vol.
46
,
2004
, pp.
1621
1632
. https://doi.org/10.1016/j.corsci.2003.10.007
17.
Nygaard
,
P. V.
,
Geiker
,
M. R.
,
Møller
,
P.
,
Sørensen
,
H. E.
, and
Klinghoffer
,
O.
,
Effect of Guard Ring Arrangements on the Current Confinement and Polarisation of Steel in Concrete-Experiments and Modeling
,
Eurocorr
,
Lisbon, Portugal
,
2005
.
18.
Feliu
,
S.
and
Gonzalez
,
J. A.
, “
Determining Polarization Resistance in Reinforced Concrete Slabs
,”
Corros. Sci.
 0010-938X, Vol.
29
(
1
),
1989
, pp.
105
113
. https://doi.org/10.1016/0010-938X(89)90083-8
19.
Feliu
,
S.
,
Gonzalez
,
J. A.
, and
Andrade
,
C.
, “
Multiple-Electrode Method for Estimating the Polarization Resistance in Large Structures
,”
J. Appl. Electrochem.
 0021-891X, Vol.
26
,
1996
, pp.
305
309
. https://doi.org/10.1007/BF00242100
20.
Videm
,
K.
and
Mydal
,
R.
, “
Electrochemical Behavior of Steel in Concrete and Evaluation of the Corrosion Rate
,”
Corros.
, Vol.
53
(
9
),
1997
, pp.
734
742
. https://doi.org/10.5006/1.3290308
21.
Feliu
,
S.
,
Gonzalez
,
J. A.
,
Miranda
,
J. M.
, and
Feliu
,
V.
, “
Possibilities and Problems of In Situ Techniques for Measuring Steel Corrosion Rates in Large Reinforced Concrete Structures
,”
Corros. Sci.
 0010-938X, Vol.
47
,
2005
, pp.
217
238
. https://doi.org/10.1016/j.corsci.2004.04.011
22.
Poursaee
,
A.
,
2010
,
Electrochemical Measurements of the Condition of Steel in Concrete
,
VDM Verlag Dr. Müller 256
,
Saarbrucken, Germany
.
23.
Feliu
,
S.
,
Gonzalez
,
J. A.
,
Feliu
,
S.
, Jr.
, and
Andrade
,
C.
, “
Confinement of the Electrochemical Signal for In-Situ Measurement of Polarization Resistance in Reinforced Concrete
,”
ACI Mater. J.
 0889-325X, Vol.
87
(
5
),
1990
, pp.
457
460
.
24.
Kranc
,
S. C.
and
Sagues
,
A. A.
, “
Polarization Current Distribution and Electrochemical Impedance Response of Reinforced Concrete when Using Guard Ring
,”
Electrochim. Acta
 0013-4686, Vol.
38
(
14
),
1993
, pp.
2055
2061
. https://doi.org/10.1016/0013-4686(93)80340-6
25.
Feliu
,
S.
,
Gonzales
,
J. A.
,
Andrade
,
C.
, and
Feliu
,
V.
, “
On-Site Determination of the Polarization Resistance in a Reinforced Concrete Beam
,”
Corros.
, Vol.
43
(
10
),
1987
, pp.
761
767
.
26.
Lasia
,
A.
, “
Electrochemical Impedance Spectroscopy and its Applications
,”
Modern Aspects of Electrochemistry
,
B. E.
Conway
,
J.
Bockris
, and
R. E.
White
, Eds.,
Kluwer Academic/Plenum Publishers
,
New York
,
1999
, pp.
143
248
.
27.
Jones
,
D. A.
,
Principles and Prevention of Corrosion
,
Macmillan Publishing Company
,
New York
,
1992
.
28.
Silverman
,
D. C.
, “
Simple Models/Practical Answers Using the Electrochemical Impedance Technique
,”
Corrosion Testing and Evaluation
,
R.
Baboian
and
W.
Dean
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1990
. https://doi.org/10.1520/STP39202S
29.
Poursaee
,
A.
, “
Determining the Appropriate Scan Rate to Perform Cyclic Polarization Test on the Steel Bars in Concrete
,”
Electrochim. Acta
 0013-4686, Vol.
55
(
3
),
2010
, pp.
1200
1206
. https://doi.org/10.1016/j.electacta.2009.10.004
30.
ASTM G1-90,
1999
, “
Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens
,” Annual Book of ASTM Standards, Vol.
3.02
, ASTM International, West Conshohocken, PA, pp.
1
8
.
31.
Andrade
,
C.
,
Merino
,
P.
,
Novoa
,
X. R.
,
Perez
,
M. C.
, and
Solar
,
L.
, “
Passivation of Reinforcing Steel in Concrete
,”
Mater. Sci. Forum
 0255-5476, Vols.
192–194
,
1995
, pp.
861
898
.
32.
Alonso
,
C.
,
Andrade
,
C.
,
Izquierdo
,
M.
,
Novoa
,
X. R.
, and
Perez
,
M. C.
, “
Effect of Protective Oxide Scales in the Macrogalvanic Behaviour of Concrete Reinforcements
,”
Corros. Sci.
 0010-938X, Vol.
40
(
8
),
1998
, pp.
1379
1389
. https://doi.org/10.1016/S0010-938X(98)00040-7
33.
Andrade
,
C.
,
Keddam
,
M.
,
No’voa
,
X. R.
,
Perez
,
M. C.
,
Rangel
,
C. M.
, and
Takenouti
,
H.
, “
Electrochemical Behaviour of Steel Rebars in Concrete: Influence of Environmental Factors and Cement Chemistry
,”
Electrochim. Acta
 0013-4686, Vol.
46
,
2001
, pp.
3905
3912
. https://doi.org/10.1016/S0013-4686(01)00678-8
34.
Andrade
,
C.
and
Alonso
,
C.
, “
Test Methods for On-Site Corrosion Rate Measurement of Steel Reinforcement in Concrete by Means of the Polarisation Resistance Method
,”
Mater. Struct.
 1359-5997, Vol.
37
,
2004
, pp.
623
643
. https://doi.org/10.1007/BF02483292
35.
Hansson
,
C. M.
, “
Comments on Electrochemical Measurements of the Rate of Corrosion of Steel in Concrete
,”
Cem. Concr. Res.
 0008-8846, Vol.
14
,
1984
, pp.
574
584
. https://doi.org/10.1016/0008-8846(84)90135-2
This content is only available via PDF.
You do not currently have access to this content.