Abstract

Austenitic stainless steels are often used for high-temperature applications under conditions where fatigue loading occurs in combination with varying temperatures, superimposed mean stresses or dwell times and environmental effects. In order to characterize and separate the various damage contributions on the deformation behavior and the damage evolution of AISI304L, isothermal and thermomechanical fatigue tests were carried out at temperatures ranging from room temperature to 800°C. The test results in combination with microstructural observations were used for an adaption and application of a simple multi-component model to predict the stress-strain response under thermomechanical fatigue conditions solely from isothermal data. A very reasonable predictive accuracy was obtained and the cyclic stress-strain calculation was directly incorporated in fatigue life assessment models. Two models, which were found to be suitable for isothermal fatigue conditions, are presented. These models were extended and applied to non-isothermal conditions. A comparison of the experimentally observed fatigue life data with the predicted values revealed that thermomechanical fatigue life can reasonably be assessed from isothermal test results, if environmental effects are correctly taken into account. Thermomechanical fatigue tests employing dwell periods indicate that the life prediction models developed are robust and conservative.

References

1.
Ellyin
,
F.
,
Fatigue
Damage
,
Crack Growth and Life Prediction
,
Chapman & Hall
,
London
,
1997
.
2.
Bauer
,
V.
and
Christ
,
H.-J.
, “
Thermomechanical Fatigue Behaviour of a Third Generation γ-TiAl Intermetallic Alloy
,”
Intermetallics
, Vol.
17
,
2009
, pp.
370
377
. https://doi.org/10.1016/j.intermet.2008.11.013
3.
Nitta
,
A.
and
Kuwabara
,
K.
, “
Thermal-Mechanical Fatigue Failure and Life Prediction
,”
Current Japanese Materials Research
, Vol.
3
,
Elsevier
,
NY
,
1988
, pp.
203
222
.
4.
Petry
,
F.
,
1989
, “
Ermüdungsverhalten des Austenitischen Stahls X3CrNi18-9 bei isothermer und thermomechanischer Beanspruchung
,” Ph.D. thesis,
Universität Erlangen-Nürnberg
.
5.
Petry
,
F.
,
Christ
,
H.-J.
, and
Mughrabi
H.
, “
Cyclic Deformation of the Austenitic Stainless Steel AISI 304L as a Function of Temperature
,”
Microstructure and Mechanical Properties of Materials
,
E.
Tenckhoff
and
O.
Vöhringer
, Eds.,
DGM Informationsgesellschaft Verlag
,
Oberursel
,
1991
, pp.
79
86
.
6.
Zauter
,
R.
,
1992
, “
Thermomechanisches Ermüdungsverhalten des austenitischen Edelstahls X3CrNi18-9
” Ph.D. thesis,
Universität Erlangen-Nürnberg
.
7.
Zauter
,
R.
,
Petry
,
F.
,
Christ
,
H.-J.
, and
Mughrabi
,
H.
, “
Thermo-Mechanical Fatigue of the Stainless Austenitic Steel AISI 304L
,”
Thermomechanical Fatigue Behavior of Materials, ASTM STP 1186
,
H.
Sehitoglu
, Ed.,
Philadelphia, PA
,
1993
, pp.
70
90
.
8.
Bauer
,
V.
,
2007
, “
Verhalten metallischer Konstruktionswerkstoffe unter thermomechanischer Belastung – Experimentelle Charakterisierung und modellmäßige Beschreibung
” Ph.D thesis,
Universität Siegen
, Shaker Verlag Gmbh, Aachen.
9.
Christ
,
H.-J.
and
Bauer
,
V.
, “
Fatigue of Austenitic Stainless Steel under Isothermal and Thermomechanical Conditions
,”
Proc. of the Hael Mughrabi Honorary Symposium: Plasticity, Failure and Fatigue in Structural Materials – From Macro to Nano
,
K. J.
Hsia
,
M.
Göken
,
T.
Pollock
,
P. D.
Portella
, and
N. R.
Moody
, Eds.,
TMS
,
Warrendale
,
2008
, pp.
49
54
.
10.
Bayerlein
,
M.
,
Christ
,
H.-J.
, and
Mughrabi
,
H.
, “
Plasticity-Induced Martensite Transformation during Cyclic Deformation of AISI 304L
,”
Mater. Sci. Engng A
, Vol.
A114
,
1989
, pp.
L11
L16
. https://doi.org/10.1016/0921-5093(89)90871-X
11.
Zauter
,
R.
,
Christ
,
H.-J.
, and
Mughrabi
,
H.
, “
Some Aspects of the Thermomechanical Fatigue Behaviour of AISI 304L Stainless Steel, Part I: Creep-Fatigue Damage
,”
Met. Trans. A
, Vol.
25A
,
1994
, pp.
401
406
.
12.
Zauter
,
R.
,
Christ
,
H.-J.
, and
Mughrabi
,
H.
, “
Some Aspects of the Thermomechanical Fatigue Behaviour of AISI 304L Stainless Steel, Part II: Dislocation Arrangements
,”
Met. Trans. A
, Vol.
25A
,
1994
, pp.
407
413
.
13.
Maier
,
H. J.
and
Christ
,
H.-J.
, “
Modelling of Cyclic Stress-Strain Behaviour under Thermomechanical Fatigue Conditions – A New Approach Based upon a Multi-Component Model
,”
Scripta. Mater.
, Vol.
34
,
1994
, pp.
609
615
.
14.
Maier
,
H. J.
and
Christ
,
H.-J.
, “
Modeling of Cyclic Stress-Strain Behaviour and Damage Mechanisms under Thermomechanical Fatigue Conditions
,”
Intern. J. Fatigue
, Vol.
19
,
Suppl. 1
,
1997
, pp.
267
274
. https://doi.org/10.1016/S0142-1123(97)00022-4
15.
Masing
,
G.
, “
Zur Heyn’schen Theorie der Verfestigung der Metalle durch verborgene elastische Spannungen
,”
Wissenschaftliche Veröffentlichungen aus dem Siemens-Konzern
, Vol.
3
,
1923
, pp.
231
239
.
16.
Burmeister
,
H.-J.
,
Holste
,
C.
, and
Lange
,
F.
, “
Ein Modell zur Interpretation der Änderung der physikalischen Größen im Verformungszyklus
,”
Kristall und Technik
, Vol.
14
,
1979
, pp.
K31
K34
.
17.
Polák
,
J.
and
Klesnil
,
M.
, “
The Hysteresis Loop: 1. A Statistical Theory
,”
Fatigue Fract. Engng. Mater. Struct.
, Vol.
5
,
1982
, pp.
19
32
. https://doi.org/10.1111/j.1460-2695.1982.tb01221.x
18.
Christ
,
H.-J.
,
Wechselverformung von Metallen
,
Springer-Verlag
,
Berlin
,
1991
.
19.
Christ
,
H.-J.
, “
Effect of Environment on Thermomechanical Fatigue Life
,”
Mater. Sci. Engng A
, Vol.
468–470
,
2007
, pp.
98
108
.
20.
Bauer
,
V.
and
Christ
,
H.-J.
, “
Application of a Fracture Mechanics Concept to Life Prediction of Austenitic Stainless Steels under TMF Loading Conditions
,”
Proc. Fifth International Conference on Low Cycle Fatigue
,
P. D.
Portella
,
H.
Sehitoglu
, and
K.
Hatanaka
, Eds.,
Deutscher Verband für Materialforschung und Prüfung e.V.
,
Berlin
,
2004
, pp.
207
212
.
21.
Riedel
,
H.
,
Fracture at High Temperatures
,
Springer-Verlag
,
Berlin
,
1987
.
22.
Nitta
,
A.
,
Kuwabara
,
K.
, and
Kitamura
,
T.
, “
The Characteristics of Thermal-Mechanical Fatigue Strength in Superalloys for Gas Turbines
,”
CRIEPI Report E282015
,
Central Research Institute of Electric Power Industry
,
Tokyo
,
1983
.
23.
Lemaitre
,
J.
and
Chaboche
,
J. L.
,
Mechanics of Solid Materials
,
Cambridge Univ. Press
,
Cambridge
,
1990
.
24.
Ostergren
,
W. J.
, “
A Damage Function and Associated Failure Equations for Predicting Hold Time and Frequency Effects in Elevated Temperature, Low Cycle Fatigue
,”
J. Testing and Evaluation
, Vol.
4
,
1976
, pp.
327
339
. https://doi.org/10.1520/JTE10520J
25.
Teteruk
,
R. G.
,
2001
, “
Modellierung der Lebensdauer bei thermomechanischer Ermüdungsbeanspruchung unter Berücksichtigung der relevanten Schädigungsmechanismen
” Ph.D. thesis, Universität Siegen,” Fortschritt-Berichte VDI, Reihe 5, No. 653,
VDI-Verlag
, Düsseldorf, Germany,
2002
.
26.
Bauer
,
V.
and
Christ
,
H.-J.
, “
A Critical Evaluation of the Applicability of TMF Life Prediction Methods to Austenitic Steel
,”
Proc. Materials Week 2002
(CD-ROM),
Werkstoffinformationsgesellschaft mbH
,
Frankfurt
,
2003
.
This content is only available via PDF.
You do not currently have access to this content.