Abstract

The potential use of vegetable oil derived industrial oils continues to be of great interest because vegetable oils are relatively non-toxic, biodegradable, and a sustainably produced basestock alternative to petroleum oil, a non-renewable basestock. For the conservation of the environment, bio-mass materials, such as vegetable oils, are desirable as substitutes for petroleum oil in heat treatment. Therefore, it is expected that these basestock materials will continue to be of increasing interest in the heat treatment industry. However, the fatty ester components containing conjugated double bonds of the triglyceride structure of vegetable oils typically produce considerably poorer thermal oxidative stability than that achievable with petroleum basestocks under typical use conditions. This is especially true when a vegetable oil is held in an open tank with agitation and exposure to air at elevated temperatures for extended periods of time (months or years). Furthermore, when used as quenchants, furnace loads of hot steel (850 °C) are typically rapidly immersed and cooled to approximately 50 °C to 60 °C bath temperatures for steel hardening applications. Clearly, for this application, reasonable thermal-oxidative stability is essential. This paper reviews the work completed thus far in screening various vegetable oils as potential steel quenchants both with and without antioxidants. Particular focus is placed, where possible, on comparing pressure differential scanning calorimetry as a potential screening method with the more commonly used (for this application) modified Indiana Stirring Oxidation Test. In addition, the general impact of oxidation on the quenching performance of the better vegetable oil candidates is shown.

References

1.
Burns
,
J. L.
, and
Brown
,
V.
, “
The How and Why of Time Quenching
,”
Am. Mach.
, Vol.
84
, No.
15
,
1940
, pp.
523
526
.
2.
Murthy
,
M. S. P.
,
Ghosh
,
B. R.
,
Sinha
,
P. P.
,
Mittal
,
M. C.
, and
Sarkar
,
B. K.
, “
Studies on the Effects of Quenching Media and Quench Delays on the Properties of 12 mm Thick 15CDV6 Steel Plates
,”
Trans. Indian Inst. Met.
, Vol.
35
, No.
1
,
2002
, pp.
33
42
.
3.
C. W.
Finkl
and
N.
Cerwin
, “
Method of Controlled Fluid Quenching of Steel
,” U.S. Patent No. 5,180,444 (Jan 19,
1993
).
4.
Kobasko
,
N. I.
,
Aronov
,
M. A.
,
Powell
,
J. A.
,
Canale
,
L. C. F.
, and
Totten
,
G. E.
, “
Intensive Quenching Process Classification and Applications
,”
Heat Treat. Met.
, Vol.
31
, No.
3
,
2004
, pp.
51
58
.
5.
Yu
,
H.
,
Nicol
,
J. A.
,
Ramser
,
R. A.
, and
Hunter
,
D. E.
, “
Method of Heat Treating Metal with a Liquid Coolant Containing Dissolved Gas
,” U.S. Patent No. 5,681,407 (Oct 28,
1997
).
6.
Totten
,
G. E.
, “
Polymer Quenchants: The Basics
,”
Advanced Materials and Processes
, Vol.
137
, No.
3
,
1990
, pp.
51
53
.
7.
Totten
,
G. E.
,
Webster
,
G. M.
,
Han
,
S. W.
, and
Kang
,
S. H.
, “
Immersion Time Quenching Technology to Facilitate Replacement of Quench Oils with Polymer Quenchants for Production of Automotive Parts
,”
Proceedings of the 1st International Automotive Heat Treating Conference
,
R.
Colas
,
K.
Funatani
, and
C. A.
Stickels
, Eds.,
ASM International
,
Materials Park, OH
,
1998
, pp.
449
455
.
8.
Pritchard
,
J.
, and
Rush
,
S.
, “
Vacuum Hardening of High-Strength Steels: Oil Versus Gas Quenching
,” Heat Treating Progress,
2007
, pp.
19
23
.
9.
Serhan
,
S.
, “
The Use of Vegetable Oils in Bio-Based Products
,”
Presentation
,
National Center for Agricultural Utilization Research
,
Peoria, IL
,
2005
.
10.
Tagaya
,
M.
, and
Tamura
,
I.
, “
Studies on the Quenching Media 3rd Report. The Cooling Ability of Oils
,”
Technol. Rep. Osaka Univ.
, Vol.
4
,
1954
, pp.
305
319
.
11.
Fujimura
,
Y.
, and
Sato
,
T.
, “
The Composition of Quenching Oil and Quenching Effects
,”
Trans. Iron Steel Inst. Jpn.
, Vol.
49
,
1963
, pp.
1008
1015
.
12.
Brennan
,
R. J.
, and
Faulkner
,
C. H.
A New Quenching Alternative
,”
Conference Proceedings of the 2nd International Conference on Quenching and Control of Distortion
,
G. E.
Totten
,
K.
Funatani
,
M. A. H.
Howes
, and
S.
Sjostrom
, Eds.,
ASM International
,
Materials Park, OH
,
1996
, pp.
423
428
.
13.
Honary
,
L. A. T.
, “
Performance of Vegetable Oils as a Heat Treat Quenchant
,”
Conference Proceedings of the 2nd International Conference on Quenching and Control of Distortion
,
G. E.
Totten
,
K.
Funatani
,
M. A. H.
Howes
, and
S.
Sjostrom
, Eds.,
ASM International
,
Materials Park, OH
,
1996
, pp.
595
605
.
14.
Carvalho de Souza
,
E.
,
Fernandes
,
M. R.
,
Augustinho
,
S. C. M.
,
de Campos Franceschini Canale
,
L.
, and
Totten
,
G. E.
, “
Comparison of Structure and Quenching Performance of Vegetable Oils
,”
J.ASTM Int.
, Vol.
6
, No.
9
,
2009
, 102188. https://doi.org/10.1520/JAI102188
15.
ISO 9950
,
1995
, “
Industrial Quenching Oils—Determination of Cooling Characteristics—Nickel-Alloy Probe Test Method
,” International Organization for Standardization (ISO).
16.
ASTM D6200-01
,
2000
, “
Standard Test Method for Determination of Cooling Characteristics of Quench Oils by Cooling Curve Analysis
,”
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
.
17.
Castro
,
W.
,
Perez
,
J. M.
,
Erhan
,
S. Z.
, and
Caputo
,
F.
, “
A Study of the Oxidation and Wear Properties of Vegetable Oils: Soybean Oil Without Additives
,”
J. Am. Oil Chem. Soc.
, Vol.
83
, No.
1
,
2006
, pp.
47
52
. https://doi.org/10.1007/s11746-006-1174-2
18.
Knowlton
,
S.
, “
Soybean Oil Having High Oxidative Stability
,” U.S. Patent No. 5,981,781 (Nov 9,
1999
).
19.
Cahoon
,
E. B.
, “
Genetic Enhancement of Soybean Oil for Industrial Uses: Prospects and Challenges
,”
AgBioForum
, Vol.
6
, No.
1–2
,
2003
, pp.
11
13
.
20.
Adhvaryu
,
A.
,
Erhan
,
S. Z.
,
Liu
,
Z. S.
, and
Perez
,
J. M.
, “
Oxidation Kinetic Studies of Oils Derived from Unmodified and Genetically Modified Vegetables using Pressurized Differential Scanning Calorimetry and Nuclear Magnetic Resonance Spectroscopy
,”
Thermochim. Acta
, Vol.
364
,
2000
, pp.
87
97
. https://doi.org/10.1016/S0040-6031(00)00626-2
21.
Tompkins
,
C.
, and
Perkins
,
E. G.
, “
Frying Performance of Low-Linolenic Acid Soybean Oil
,”
J. Am. Oil Chem. Soc.
, Vol.
77
, No.
3
,
2000
, pp.
223
229
. https://doi.org/10.1007/s11746-000-0036-2
22.
Honary
,
L. A. T.
, “
Soybean Based Hydraulic Fluid
,” U.S. Patent No. 5,972,855 (Oct 26,
1999
).
23.
Totten
,
G. E.
,
Tensi
,
H. M.
, and
Lanier
,
K.
, “
Performance of Vegetable Oils as a Cooling Medium inComparison to a Standard Mineral Oil
,”
J. Mater. Eng. Perform.
, Vol.
8
, No.
4
,
1999
, pp.
409
416
. https://doi.org/10.1361/105994999770346693
24.
Prabhu
,
K. N.
, and
Fernandes
,
P.
, “
Determination of Wetting Behavior, Spread Activation Energy, and Quench Severity of Bioquenchants
,”
Metall. Mater. Trans. B
, Vol.
38
, No.
4
,
2007
, pp.
631
640
. https://doi.org/10.1007/s11663-007-9060-3
25.
Fernandes
,
P.
, and
Prabhu
,
K. N.
, “
Comparative Study of Heat Transfer and Wetting Behaviour of Conventional and Bioquenchants for Industrial Heat Treatment
,”
Int. J. Heat Mass Transfer
, Vol.
51
, No.
3–4
,
2008
, pp.
526
538
. https://doi.org/10.1016/j.ijheatmasstransfer.2007.05.018
26.
Moore
,
R. N.
, and
Bickford
,
W. G.
, “
A Comparative Evaluation of Several Antioxidants in Edible Fats
,”
J. Am. Oil Chem. Soc.
, Vol.
29
, No.
1
,
1952
, pp.
1
4
. https://doi.org/10.1007/BF02640168
27.
Gearhart
,
W. M.
, and
Stuckey
,
B. N.
, “
A Comparison of Commercially Used Phenolic Antioxidants in Edible Animal Fats
,”
J. Am. Oil Chem. Soc.
, Vol.
32
, No.
1
,
1955
, pp.
386
390
. https://doi.org/10.1007/BF02639693
28.
Ruger
,
C. W.
,
Klinker
,
E. J.
, and
Hammond
,
E. G.
, “
Abilities of Some Antioxidants to Stabilize Soybean Oil in Industrial Use Conditions
,”
J. Am. Oil Chem. Soc.
, Vol.
79
, No.
7
,
2002
, pp.
733
736
. https://doi.org/10.1007/s11746-002-0550-2
29.
Becker
,
R.
, and
Knorr
,
A.
, “
An Evaluation of Antioxidants for Vegetable Oils at Elevated Temperatures
,”
Lubr. Sci.
, Vol.
8
, No.
2
,
1996
, pp.
95
117
. https://doi.org/10.1002/ls.v8:2
30.
Sherwin
,
E. R.
, “
Antioxidants for Vegetable Oils
,”
J. Am. Oil Chem. Soc.
, Vol.
53
,
1976
, pp.
430
436
. https://doi.org/10.1007/BF02605739
31.
Fox
,
N. J.
, and
Stachowiak
,
G. W.
, “
Vegetable Oil-Based Lubricants—A Review of Oxidation
,”
Tribol. Int.
, Vol.
40
,
2007
, pp.
1035
1046
. https://doi.org/10.1016/j.triboint.2006.10.001
32.
Yamane
,
K.
,
Kawasaki
,
K.
,
Sone
,
K.
,
Hara
,
T.
, and
Prakoso
,
T.
, “
Oxidation Stability of Biodiesel and its Effects on Diesel Combustion and Emission Characteristics
,”
Int. J. Engine Res.
, Vol.
8
,
2007
, pp.
307
319
. https://doi.org/10.1243/14680874JER00207
33.
Jain
,
S.
, and
Sharma
,
M. P.
, “
Stability of Biodiesel and Its Blends: A Review
,”
Renewable Sustainable Energy Rev.
, Vol.
14
,
2010
, pp.
667
678
. https://doi.org/10.1016/j.rser.2009.10.011
34.
Anonymous
,
2010
, “
Schall Oven Storage Stability Test
,”
Publication ZG-194E
,
Eastman ChemicalCompany
, http://www.eastman.com/Literature_Center/Z/ZG194.pdf (Last accessed 27 Oct
2010
).
35.
Matthäus
,
B.
, “
Determination of the Oxidative Stability of Vegetable Oils by Rancimat and Conductivity and Chemiluminescence Methods
,”
J. Am. Oil Chem. Soc.
, Vol.
73
, No.
8
,
1996
, pp.
1039
1043
. https://doi.org/10.1007/BF02523413
36.
Enferadi
,
S. T.
,
Rabiei
,
Z.
, and
Vannozzi
,
G. P.
, “
Protection of Biodiesel Based on Sunflower Oil from Oxidative Degradation by Natural Antioxidants
,”
Helia
, Vol.
29
, No.
44
,
2006
, pp.
25
32
. https://doi.org/10.2298/HEL0644025E
37.
Mittelbach
,
M.
, and
Schober
,
S.
, “
The Influence of Antioxidants on the Oxidation Stability of Biodiesel
,”
J. Am. Oil Chem. Soc.
, Vol.
80
, No.
8
,
2003
, pp.
817
823
. https://doi.org/10.1007/s11746-003-0778-x
38.
Tang
,
H.
,
Wang
,
A.
,
Salley
,
S. O.
, and
Ng
,
K. Y. S.
, “
The Effect of Natural and Synthetic Antioxidants on the Oxidative Stability of Biodiesel
,”
J. Am. Oil Chem. Soc.
, Vol.
85
,
2008
, pp.
373
382
. https://doi.org/10.1007/s11746-008-1208-z
39.
Somerville
,
A.
, “
Heat Treatment of Metals
,” U.S. Patent No. 1,742,791 (Jan 7, 1930).
40.
Chaiyasit
,
W.
,
Elias
,
R. J.
,
McClements
,
D. J.
, and
Decker
,
E. A.
, “
Role of Physical Structures in Bulk Oils on Lipid Oxidation
,”
Crit. Rev. Food Sci. Nutr.
, Vol.
47
,
2007
, pp.
299
317
. https://doi.org/10.1080/10408390600754248
41.
Fox
,
N. J.
, and
Stachowiak
,
G. W.
, “
Vegetable Oil-Based Lubricants—A Review of Oxidation
,”
Tribol. Int.
, Vol.
40
,
2007
, pp.
1035
1046
. https://doi.org/10.1016/j.triboint.2006.10.001
42.
Gatto
,
V. J.
,
Moehle
,
W. E.
,
Cobb
,
T. W.
, and
Schneller
,
E. R.
, “
Oxidation Fundamentals and Its Application to Turbine Oil
,”
J. ASTM Int.
, Vol.
3
, No.
4
,
2006
, JAI13498. https://doi.org/10.1520/JAI13498
43.
Tian
,
K.
, and
Dasgupta
,
P. K.
, “
Determination of Oxidative Stability of Oils and Fats
,”
Anal. Chem.
, Vol.
71
,
1999
, pp.
1692
1698
. https://doi.org/10.1021/ac981365t
44.
Porter
,
N. A.
,
Lehmann
,
L. S.
,
Weber
,
B. A.
, and
Smith
,
K. J.
, “
Unified Mechanism for Polyunsaturated Fatty Acid Autoxidation. Competition of Peroxy Radical Hydrogen Atom Abstraction, Beta-Scission, and Cyclization
,”
J. Am. Chem. Soc.
, Vol.
103
, No.
21
,
1981
, pp.
6447
6455
. https://doi.org/10.1021/ja00411a032
45.
Litwinienko
,
G.
, and
Kasprzycka-Guttman
,
T.
, “
Study on the Autoxidation Kinetics of Fat Components by Differential Scanning Calorimetry. 2. Unsaturated Fatty Acids and Their Esters
,”
Ind. Eng. Chem. Res.
, Vol.
39
, No.
1
,
2000
, pp.
13
17
. https://doi.org/10.1021/ie990552u
46.
Kodali
,
D. R.
, “
High Performance Ester Lubricants from Natural Oils
,”
Ind. Lubr. Tribol.
, Vol.
54
, No.
4
,
2002
, pp.
165
170
. https://doi.org/10.1108/00368790210431718
47.
Debruyne
,
I.
, “
Soybean Oil Processing: Quality Criteria and Flavor Reversion
,”
Oil Mill Gazetteer
, Vol.
110m
,
2004
, pp.
10
11
.
48.
Bowman
,
W. F.
, and
Stochowiak
,
G. W.
, “
Application of Sealed Capsule Differential Scanning Calorimetry—Part II: Assessing the Performance of Antioxidants in Base Oils
,”
Lubr. Eng.
, Vol.
55
, No.
5
,
1999
, pp.
22
29
.
49.
Paz
,
I.
, and
Molero
,
M.
, “
Catalytic Effect of Solid Metals on Thermal Stability of Olive Oils
,”
J. Am. Oil. Chem. Soc.
, Vol.
77
, No.
2
,
2000
, pp.
127
130
. https://doi.org/10.1007/s11746-000-0021-9
50.
Ruger
,
C. W.
,
Klinker
,
E. J.
, and
Hammond
,
E. G.
, “
Abilities of Some Antioxidants to Stabilize Soybean Oil in Industrial Use Conditions
,”
J. Am. Oil Chem. Soc.
, Vol.
79
, No.
7
,
2002
, pp.
733
736
. https://doi.org/10.1007/s11746-002-0550-2
51.
Baião
,
N. C.
, and
Lara
,
L. J. C.
, “
Oil and Fat in Brioler Nutrition
,”
Brazilian Journal of Poultry Science
, Vol.
7
, No.
3
,
2005
, pp.
129
141
.
52.
Kolb
,
T.
,
Loyall
,
U.
, and
Schafer
,
J.
, “
Antioxidants—Determination and Interpretation of the Temperature Correlation of Oxidative Stabilities
,” Food Marketing and Technology,
2002
, pp.
1
5
.
53.
Evans
,
J. C.
,
Kodali
,
D. R.
, and
Addis
,
P. B.
, “
Optimal Tocopherol Concentrations to Inhibit Soybean Oil Oxidation
,”
J. Am. Oil Chem. Soc.
, Vol.
79
, No.
1
,
2002
, pp.
747
751
. https://doi.org/10.1007/s11746-002-0433-6
54.
Choe
,
E.
, and
Min
,
D. B.
, “
Mechanisms and Factors for Edible Oil Oxidation
,”
Compr. Rev. Food Sci. Food Saf.
, Vol.
5
,
2006
, pp.
169
186
. https://doi.org/10.1111/j.1541-4337.2006.00009.x
55.
Valenzuela
,
A.
,
Sanhuezza
,
J.
, and
Nieto
,
S.
, “
Effect of Synthetic Antioxidants on Cholesterol Stability During Thermal-Induced Oxidation of a Polyunsaturated Vegetable Oil
,”
J. Am. Oil Chem. Soc.
, Vol.
79
, No.
4
,
2002
, pp.
325
328
. https://doi.org/10.1007/s11746-002-0482-x
56.
Kauffman
,
R. E.
, and
Rhine
,
W. E.
, “
Development of a Remaining Useful Life of a Lubricant Evaluation Technique. Part I: Differential Scanning Calorimetric Techniques
,”
Lubr. Eng.
, Vol.
42
, No.
2
,
1988
, pp.
154
161
.
57.
Becker
,
R.
, and
Knorr
,
A.
, “
An Evaluation of Antioxidants for Vegetable Oils at Elevated Temperatures
,”
Lubr. Sci.
, Vol.
8
, No.
2
,
1996
, pp.
95
117
. https://doi.org/10.1002/ls.v8:2
58.
Bowman
,
W. F.
, and
Stachowiak
,
G. W.
, “
Determining the Oxidation Stability of Lubricating Oils using Sealed Capsule Differential Scanning Calorimetry
,”
Tribol. Int.
, Vol.
29
, No.
1
,
1996
, pp.
24
27
. https://doi.org/10.1016/0301-679X(95)00030-8
59.
Eklund
,
M.
, “
Response to Different Oxidation Inhibitors for Industrial Lube Base Stocks
,”
Ind. Lubr. Tribol.
, Vol.
54
, No.
5
,
2002
, pp.
202
208
. https://doi.org/10.1108/00368790210697787
60.
Zhu
,
Q.
,
Zhang
,
X.-M.
, and
Fry
,
A. J.
, “
Bond Dissociation Energies of Antioxidants
,”
Polym. Degrad. Stab.
, Vol.
57
,
1997
, pp.
43
50
. https://doi.org/10.1016/S0141-3910(96)00224-8
61.
Chao
,
T. S.
,
Hutchison
,
D. A.
, and
Kjonaas
,
M.
, “
Some Synergistic Antioxidants for Synthetic Lubricants
,”
Ind. Eng. Chem. Prod. Res. Dev.
, Vol.
23
,
1984
, pp.
21
27
. https://doi.org/10.1021/i300013a005
62.
Komatsu
,
D.
,
Souza
,
E. C.
,
Carvalho de Souza
,
E.
,
Canale
,
L. F.C.
, and
Totten
,
G. E.
, “
Effect of Antioxidants and Corrosion Inhibitor Additives on the Quenching Performance of Soybean Oil
,”
Strojniški Vestnik
, Vol.
56
. No.
2
,
2010
, pp.
121
130
.
63.
Rogers
,
T. H.
, and
Shoemaker
,
B. H.
, “
Indiana Oxidation Test for Motor Oils
,”
Anal. Chem.
, Vol.
6
, No.
6
,
1933
, pp.
419
420
.
64.
Gunstone
,
F. D.
, “
Information on the Composition of Fats from their High-Resolution 13CMR Nuclear Magnetic Resonance Spectra
,”
J. Am. Oil Chem. Soc.
, Vol.
70
,
1993
, pp.
361
366
. https://doi.org/10.1007/BF02552707
65.
Tagaya
,
M.
, and
Tamura
,
I.
, “
No. 274—On the Deterioration of Quenching Oils
,”
Technol. Rep. Osaka Univ.
, Vol.
7
,
1957
, pp.
403
424
.
66.
Tagaya
,
M.
,
Tamura
,
I.
, and
Sugimoto
,
K.
, “
On the Deterioration of Quenching Oils (III)
,”
Tetsu to Hagane
, Vol.
43
,
1957
, pp.
61
66
.
67.
Parodi
,
A.
,
Marini
,
L.
, and
Matta
,
F.
, “
Quenching Fluid Composition
,” WO/2004/099450, World Intellectual Property Organization (Nov 18,
2004
).
68.
ASTM D6186-08
,
2008
, “
Standard Test Method for Oxidation Induction Time of Lubricating Oils by Pressure Differential Scanning Calorimetry (PDSC)
,”
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
.
69.
ASTM D5483-05
,
2010
, “
Standard Test Method for Oxidation Induction Time of Lubricating Greases by Pressure Differential Scanning Calorimetry
,”
Annual Book of ASTM Standards
, Vol.
05.02
,
ASTM International
,
West Conshohocken, PA
.
70.
ASTM E2009-08
,
2008
, “
Standard Test Method for Oxidation Onset Temperature of Hydrocarbons by Differential Scanning Calorimetry
,”
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
.
71.
ASTM E1858-08
,
2008
, “
Standard Test Method for Determining Oxidation Induction Time of Hydrocarbons by Differential Scanning Calorimetry
,”
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
.
72.
Kinami
,
T.
,
Horii
,
N.
,
Narayan
,
B.
,
Arato
,
S.
,
Hosokawa
,
M.
,
Miyashita
,
K.
,
Negishi
,
H.
,
Ikuina
,
J.
,
Noda
,
R.
, and
Shirasawa
,
S.
, “
Occurrence of Conjugated Linolenic Acids in Purified Soybean Oil
,”
J. Am. Oil. Chem. Soc.
, Vol.
84
, No.
1
,
2007
, pp.
23
29
. https://doi.org/10.1007/s11746-006-1005-5
73.
ASTM D445-06
,
2006
, “
Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (and Calculation of Dynamic Viscosity)
,”
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
.
74.
ASTM D664-07
,
2007
, “
Standard Test Method for Acid Number of Petroleum Products by Potentiometric Titration
,”
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
.
75.
ASTM D5554-95
,
2006
, “
Standard Test Method for Determination of the Iodine Value of Fats and Oils
,”
Annual Book of ASTM Standards
, Vol.
15.04
,
ASTM International
,
West Conshohocken, PA
.
76.
Christie
,
W. W.
,
Gas Chromatography and Lipids: A Practical Guide
,
The Oily Press
,
Bridgewater, U.K.
,
1989
, pp.
11
27
, 69.
77.
Costa Neto
,
P. R.
,
Rossi
,
L. F. S.
,
Zagonel
,
G. F.
, and
Ramos
,
L. P.
, “
Produção de Biocombustível alternativo ao óleo diesel através da transesterificação de óleo de soja usado em frituras [Biofuel Production as an Alternative to Diesel Oil Through Transesterification of Soybean Oil Used in Frying]
,”
Quím. Nova
, Vol.
2–3
, No.
4
,
2000
, pp.
531
537
. https://doi.org/10.1590/S0100-40422000000400017
78.
Bergana
,
M. M.
, and
Lee
,
T. W.
, “
Structure Determination of Long-Chain Polyunsaturated Trigylcerols by High-Resolution 13C Magnetic Resonance
,”
J. Am. Oil Chem. Soc.
, Vol.
73
, No.
5
,
1996
, pp.
551
556
. https://doi.org/10.1007/BF02518106
79.
Miyake
,
Y.
,
Yokomizo
,
K.
, and
Matsuzaki
,
N.
, “
Determination of Unsaturated Fatty Acid Composition by High-Resolution Nuclear Magnetic Resonance Spectroscopy
,”
J. Am. Oil Chem. Soc.
, Vol.
75
, No.
9
,
1998
, pp.
1091
1094
.
80.
Bashford
,
A.
, and
Mills
,
A. J.
, “
The Development of Improved Additives for Quenching Oils using Laboratory Simulations
,”
Heat Treat. Met.
, Vol.
11
, No.
1
,
1984
, pp.
9
14
.
81.
Farah
,
A. F.
,
2002
, “
Caracterização de óleos vegetais como alternativa para meios de resfriamento utilizados no tratamento térmico de têmpera [Characterization of Vegetable Oils as an Alternative for Cooling Fluids Used in Heat Treatment by Quenching]
,” Ph.D. dissertation,
Interunidades em Ciência e Engenharia de Materiais, Universidade de São Paulo
, São Carlos, Brazil.
82.
Lamb
,
G. G.
,
Loane
,
C. M.
, and
Gaynor
,
J. W.
, “
Indiana Stirring Oxidation Test for Lubricating Oils
,”
Ind. Eng. Chem.
, Vol.
13
, No.
5
,
1941
, pp.
317
321
.
83.
Schneider
,
M.
, “
Government Industry Forum on Non-food Uses of Crops (GIFNFG 7/7)—Case Study Plant Oil Based Lubricants in Total Loss and Potential Loss Applications
,” Final Report prepared for P. Smith Network Manager, University of York, U.K.,
2002
.
84.
Santos
,
J. C. O.
,
Santos
,
I. M. G.
, and
Souza
,
A. G.
, “
Effect of Heating and Cooling on Rheological Parameters of Edible Vegetable Oils
,”
J. Food Eng.
, Vol.
67
,
2005
, pp.
401
405
. https://doi.org/10.1016/j.jfoodeng.2004.05.007
85.
Fasina
,
O. O.
,
Hallman
,
H.
,
Craig-Schmidt
,
M.
, and
Clements
,
C.
, “
Predicting Temperature-Dependence Viscosity of Vegetable Oils from Fatty Acid Composition
,”
J. Am. Oil Chem. Soc.
, Vol.
83
, No.
10
,
2006
, pp.
899
903
. https://doi.org/10.1007/s11746-006-5044-8
86.
ASTM D2270-04
,
2004
, “
Standard Practice for Calculating Viscosity Index From Kinematic Viscosity at 40 and 100 °C
,”
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
.
87.
Blaine
,
R. L.
,
Lundgren
,
C. J.
, and
Harris
,
M. B.
,
1997
, “
Oxidation Induction Time—A Review of DSC Experimental Effects
,”
Oxidative Behavior of Materials by Thermal Analytical Techniques
, ASTM STP 1326,
A. T.
Riga
and
G. H.
Patterson
, Eds.,
ASTM International
,
West Conshohocken, PA
, pp.
3
15
.
88.
ASTM D6186-08
,
2008
, “
Standard Test Method for Oxidation Induction Time for Lubrication Oils by Pressure Differential Scanning Calorimetry (PDSC)
,”
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
.
89.
Cerny
,
J.
, “
Using Calorimetry to Measure Motor Oil Remaining Useful Life
,” Practicing Oil Analysis,
2004
, http://www.machinerylubrication.com/Read/649/calorimetry-motor-oil-life.
90.
Hassel
,
R. L.
, “
Thermal Analysis: An Alternative Method of Measuring Oil Stability
,”
J. Am. Oil Chem. Soc.
, Vol.
53
,
1976
, pp.
179
181
. https://doi.org/10.1007/BF02633299
91.
Dunn
,
R. O.
, “
Analysis of Oxidative Stability of Methyl Soyate by Pressurized-Differential Scanning Calorimetry
,”
Trans. ASAE
, Vol.
43
, No.
5
,
2000
, pp.
1203
1208
.
92.
Kaufman
,
R. E.
, and
Rhine
,
W. E.
, “
Development of a Remaining Useful Life of a Lubricant Evaluation Technique. Part I: Differential Scanning Calorimetric Techniques
,”
Lubr. Eng.
, Vol.
44
, No.
2
,
1988
, pp.
154
161
.
93.
Zeman
,
A.
,
Sprengel
,
A.
,
Niedermeier
,
D.
, and
Späth
,
M.
, “
Biodegradable Lubricants—Studies on Thermo-Oxidation of Metal-Working and Hydraulic Fluids by Differential SWcanning Calorimetry (DSC)
,”
Thermochim. Acta
, Vol.
268
,
1995
, pp.
9
15
. https://doi.org/10.1016/0040-6031(95)02512-X
This content is only available via PDF.
You do not currently have access to this content.