Abstract

Conventional methods to estimate variable-amplitude fatigue life revolve either around cumulative damage analysis using the local stress-strain approach, or, around one of the crack growth load interaction models. Despite advances in modeling the mechanics of fatigue, none of these methods can faithfully reproduce the near-threshold variable amplitude fatigue response that determines the durability of machines and structures primarily because they fail to model the science behind the residual stress effect. Residual stress effects have a strong bearing on metal fatigue and owe their influence to the moderation of crack-tip surface chemistry and surface physics. This demands the treatment of threshold stress intensity as a variable, sensitive to load history. The correct estimation of crack closure is also crucial to determining the variable amplitude fatigue response and demands assessment of the cyclic plastic zone stress-strain response.

References

1.
Thorneycroft
,
T.
, “
On the Form of Shafts and Axles
,” Proceedings of the Institution of Mechanical Engineers, London, Oct 1850, pp.
35
41
pp. 4–15.
2.
Braithwaite
,
F.
, “
On the Fatigue and Subsequent Fracture of Metals
,” Proc. Inst. Civ. Eng, London, May
1854
.
3.
Wohler
,
A.
, Uber die Festigkeitsversuche mit Eisen und Stahl, Berlin, Ernst und Korn,
1870
.
4.
Anon
, “
Wöhler’s Experiments on the strength of Metals
,”
Engineering
, Vol.
4
,
1867
, pp.
160
161
.
5.
Manson
,
S. S.
,
Future
Directions for Low Cycle Fatigue
,”
Low Cycle Fatigue, ASTM Spec. Tech. Publ. 942
,
H. D.
Solomon
,
G. R.
Halford
, and
B. N.
Leis
, Eds.,
American Society for Testing Materials
,
Philadelphia
,
1988
, pp.
15
39
.
6.
Miner
,
M. A.
, “
Cumulative Damage in Fatigue
,”
Trans. ASME J. Appl. Mech.
, Vol.
12
,
1945
, pp.
A159
A164
.
7.
Anon.
, “
Wöhler’s Experiments on the “Fatigue”of Metals
,” Engineering, June
1871
, pp.
199
441
.
8.
Bauschinger
,
J.
, “On the Change of the Elastic Limit and Strength of Iron and Steel by Tension and Compression, by Heating and Cooling and by Often Repeated Loading,” Technical Report, Munich Technical Univ., Munich, Germany,
1886
(in German).
9.
Goodman
,
J.
,
Mechanics Applied to Engineering
,
Longmans-Green
,
London
,
1899
.
10.
Raju
,
K. N.
,
Workshop on Fatigue, Fracture and Failure Analysis
, Notes, Vol.
1
,
National Aeronautical Laboratory
,
Bangalore
, March
1979
.
11.
Hull
,
D.
,
Bacon
,
D. J.
,
Introduction to Dislocations
, Fourth Edition,
Butterworth-Heinemann
,
Oxford
,
2001
.
12.
Grosskreutz
,
J. C.
, “
A Critical Review of Micromechanisms in Fatigue
,”
Fatigue – An Interdisciplinary Approach
,
Syracuse University Press
,
Syracuse
,
1964
, pp.
27
62
.
13.
Schijve
,
J.
,
Fatigue of Materials and Structures
,
Springer
,
New York
,
2003
, p. 317.
14.
Gassner
,
E.
, “
Strength Experiments Under Cyclic Loading in Aircraft Structures
,”
Luftwissen
Vol.
6
,
1939
, pp.
61
64
(in German).
15.
Neuber
,
H.
,
1937
,
Kerbspanmungslehre [Theory of notch stresses]
,
J.W.
Edwards
, Ed.,
Springer
,
Berlin
, Ann Arbor, MI,
1946
.
16.
Ramberg
,
W.
and
Osgood
,
W. R.
, “
Description of Stress-Strain Curves by Three Parameters
,” Technical Report No. 902,
National Advisory Committee for Aeronautics
, Washington, D.C.,
1943
.
17.
Wetzel
,
R. M.
,
1971
, “
A Method for Fatigue Damage Analysis
,” Ph.D. thesis,
Dept. of Civil Engineering, Univ. of Waterloo
, ON, Canada.
18.
SAE Fatigue Design Handbook
, 3rd ed., AE-22,
Society for Automotive Engineers
,
Warrendale, PA
,
1997
).
19.
Matsuishi
,
M.
and
Endo
,
T.
, “
Fatigue of Metals Subjected to Varying Stress
,” Trans. Jpn. Soc. Mech. Eng., March,
1968
.
20.
van Dijk
,
G. M.
and
de Jonge
,
J. B.
, “
Introduction to a Fighter Aircraft Loading Standard for Fatigue Evaluation ‘FALSTAFF’
,” Report No. NLR MP 75017U,
National Aerospace Laboratory
, Amsterdam, The Netherlands,
1975
.
21.
de Jonge
,
J. B.
,
Schutz
,
D.
,
Lowak
,
H.
, and
Schijve
,
J.
, “
A Standardized Load Sequence for Flight Simulation Tests on Transport Aircraft Wing Structures
,” Report No. NLR TR 73029U,
National Aerospace Laboratory (NLR)
, Amsterdam, The Netherlands,
1973
.
22.
Sunder
,
R.
, “
Rainflow Applications in Accelerated Cumulative Fatigue Analysis
,”
The Rainflow Method in Fatigue
,
Y.
Murakami
, Ed.,
Butterworth -Heinemann
,
Oxford
,
1992
, pp.
67
76
.
23.
Neggard
,
G. R.
, “
The History of the Aircraft Structural Integrity Program
,” Report No. 680.1B,
Aerospace Structural Information and Analysis Center (ASIAC)
, Flight Dynamics Directorate, WPAFB, Ohio
1980
.
24.
Schijve
,
J.
, “
Cumulative Damage Problems in Aircraft Structures and Materials
,”
Aeronaut. J.
, Vol.
74
,
1970
, pp.
517
532
.
25.
Sunder
,
R.
,
Porter
,
J.
, and
Ashbaugh
,
N. E.
, “
The Effect of Stress Ratio on Fatigue Crack Growth Rate in the Absence of Crack Closure
,”
Int. J. Fatigue
, Vol.
19
,
1997
, pp.
S211
S221
. https://doi.org/10.1016/S0142-1123(97)00043-1
26.
Sunder
,
R.
, “
Contribution of Individual Load Cycles to Fatigue Crack Growth under Aircraft Spectrum Loading
,”
M. R.
Mitchell
and
R. W.
Landgraf
, ASTM Spec. Tech. Publ., Vol. 1122,
1992
, pp.
176
190
.
27.
Paris
,
P. C.
,
Gomez
,
M. P.
, and
Anderson
,
W. E.
, “
A Rational Analytical Theory of Fatigue
,”
Trend Eng.
, Vol.
13
,
1961
, pp.
9
14
.
28.
Figge
,
I. E.
, and
Newman
,
J. C.
, “
Fatigue Crack Propagation in Structures with Simulated Rivet Forces
,”
ASTM Spec. Tech. Publ.
, Vol.
415
,
1967
, pp.
71
93
.
29.
Schijve
,
J.
, “
Effect of Load Sequences on Crack Propagation Under Random and Program Loading
,”
Eng. Fracture Mech.
, Vol.
5
,
1973
, pp.
269
280
. https://doi.org/10.1016/0013-7944(73)90022-2
30.
Wheeler
,
O. E.
, “
Spectrum Loading and Crack Growth
,”
ASME J Basic Eng.
, Vol.
94
,
1972
, pp.
181
186
.
31.
Willenborg
,
J.
,
Engle
,
R. H.
, and
Wood
,
H. A.
, “
A Crack Growth Retardation Model Based on Effective Stress Concepts
,” Report No. AFFDL-TM-71-1 FBR,
WPAFB
, OH,
1971
.
32.
Walker
,
E. K.
, “
Effects of Environment and Complex Load History on Fatigue Life
,”
ASTM Spec. Tech. Publ.
, Vol.
462
,
1970
, pp.
1
14
.
33.
Elber
,
W.
, “
The Significance of Fatigue Crack Closure
,”
ASTM Spec. Tech. Publ.
, Vol.
486
,
1971
, pp.
230
242
.
34.
Newman
,
J. C.
,
A Crack-Closure Model for Predicting Fatigue Crack Growth Under Aircraft Spectrum Loading. Methods and Models for Predicting Fatigue Crack Growth Under Random Loading
,
ASTM Spec. Tech. Publ
.,
J.B.
Chang
and
C. M.
Hudson
, Eds., Vol.
748
,
1981
, pp.
53
84
.
35.
de Koning
,
A. U.
, “
A Simple Crack Closure Model for Prediction of Fatigue Crack Growth Rates Under Variable-Amplitude Loading
,”
Fracture Mechanics
,
ASTM Spec. Tech. Publ.
,
R.
Roberts
, Ed., Vol.
743
,
1981
, pp.
63
85
.
36.
Ashbaugh
,
N. E.
,
Dattaguru
,
B.
,
Khobaib
,
M.
,
Nicholas
,
T.
,
Prakash
,
R. V.
,
Ramamurthy
,
T. S.
, and Seshadri, B. R., “
Experimental and Analytical Estimates of Fatigue Crack Closure in an Aluminum–Copper Alloy. Part I. Laser Interferometry and electron Fractography
,”
Fatigue Fract. Eng. Mater. Struct.
, Vol.
20
(
7
),
1997
, pp.
951
961
. https://doi.org/10.1111/j.1460-2695.1997.tb01539.x
37.
Sunder
,
R.
, and
Dash
,
P. K.
, “
Measurement of Fatigue Crack Closure Through Electron Microscopy
,”
Int. J. Fatigue
, Vol.
4
, April
1982
, pp.
97
105
. https://doi.org/10.1016/0142-1123(82)90065-2
38.
Schijve
,
J.
, “
Four Lectures on Fatigue Crack Growth
,”
Eng. Fracture Mech.
, Vol.
11
,
1979
, pp.
176
221
.
39.
Sunder
,
R.
, “
A Unified Model of Fatigue Kinetics Based on Crack Driving Force and Material Resistance
,”
Int. J. Fatigue
, Vol.
29
,
2007
, pp.
1681
1696
. https://doi.org/10.1016/j.ijfatigue.2007.01.028
40.
Riddell
,
W. T.
and
Piascik
,
R. S.
, “
Stress Ratio Effects on Crack Opening Loads and Crack Growth Rates in Aluminum Alloy 2024
,”
Fatigue Fracture Mechanics
, ASTM Spec. Tech. Publ., Vol. 1332,
T. L.
Panontin
and
S. D.
Sheppard
, Eds., Vol.
29
,
American Society for Testing and Materials
,
WestConshohocken, PA
,
1999
, pp.
407
25
.
41.
Forsyth
,
P. J. E.
, “
Fatigue Damage and Crack Growth in Aluminium Alloys
,”
Acta Metall.
, Vol.
11
,
1963
, pp.
703
719
. https://doi.org/10.1016/0001-6160(63)90008-7
42.
Sunder
,
R.
, “
Binary Coded Event Registration on Fatigue Fracture Surfaces
,”
J. Soc. Env. Engrs.
,
SEECO
,
London
,
1983
, p. 197.
43.
Laird
,
C.
,
Mechanisms and Theories of Fatigue, Fatigue and Microstructure
,
ASM
,
Metals Park, OH
,
1978
, pp.
149
204
.
44.
Zhang
,.
J. Z.
, “
A Shear Band Decohesion Model for Small Fatigue Crack Growth in an Ultra-Fine Grain Aluminum Alloy
,”
EFM
, Vol.
65
,
2001
, pp.
665
681
. https://doi.org/10.1016/S0013-7944(99)00148-4
45.
Sunder
,
R.
, “
Fatigue as a Process of Brittle Micro-Fracture
,”
FFEMS
, Vol.
28
(
3
),
2005
, pp.
289
300
.
46.
Gsell
,
M.
,
Jakob
,
P.
, and
Menzel
,
D.
, “
Effect of Substrate Strain on Adsorption
,”
Science
Vol.
280
,
1998
, pp.
717
720
. https://doi.org/10.1126/science.280.5364.717
47.
Ro
,
Y.
,
Agnew
,
S. R.
, and
Gangloff
,
R. P.
, “
Environmental Fatigue-Crack Surface Crystallography for Al-Zn-Cu-Mg-Mn/Zr
,”
Metall. Mater. Trans. A
, Vol.
39A
,
2008
, pp.
1449
1465
. https://doi.org/10.1007/s11661-008-9522-5
48.
Schijve
,
J.
and
Arkema
,
W. J.
, “
Crack Closure And the Environmental Effect on Fracture Mode Transition in Fatigue Crack Growth
,”
Report No. VTH-217
,
Delft Univ.
,
Delft, The Netherlands
,
1976
.
49.
Vogelesang
,
L. B.
and
Schijve
,
J.
, “
Environmental Effects on Fatigue Failure Mode Transition Observed in Aluminium Alloys
Report No. LR-289
,
Delft Univ. of Technology
,
Delft, The Netherlands
,
1979
.
50.
Gach
,
E.
and
Pippan
,
R.
, “
Cyclic Crack Tip Deformation – the Influence of Environment
,” Proceedings of the Tenth International Conference on Fracture, International Congress of Fracture, Hawaii, Dec 2001 [Paper ICF 100420OR].
51.
Bowles
,
C. Q.
,
1978
, “
The Role of Environment, Frequency and Wave Shape During Fatigue Crack Growth of Aluminum Alloys
,” Ph.D. thesis, Report No. LR-270,
Delft Univ. of Technology
, Delft, The Netherlands.
52.
Petit
,
J.
,
Henaff
,
G.
, and
Sarrazin-Baudoux
,
C.
, “
Mechanisms and Modeling of Near-Threshold Fatigue Crack Propagation, Fatigue Crack Growth Thresholds, Endurance Limits and Design
,”
ASTM Spec. Tech. Publ.
,
J. C.
Newman
, Jr.
and
R. S.
Piascik
, Eds., Vol.
1372
,
American Society for Testing and Materials
,
West Conshohocken, PA
,
2000
.
53.
Bradshaw
,
F. J.
and
Wheeler
,
C.
, “
The Effect of Gaseous Environment and Fatigue Frequency on the Growth of Fatigue Cracks in Some Aluminium Alloys
,”
Int. J Fract. Mech.
, Vol.
6
,
1969
, pp.
255
268
.
54.
Sunder
,
R.
,
Porter
,
W. J.
, and
Ashbaugh
,
N. E.
, “
Stress-Level Dependent Stress Ratio Effect on Fatigue Crack Growth, Fatigue and Fracture Mechanics: Twenty-Ninth Volume
,”
ASTM Spec. Tech. Publ.
, Vol.
1332
,
T. L.
Panontin
and
S. D.
Sheppard
, Eds.,
American Society for Testing and Materials
,
West Conshohocken, PA
,
1999
.
55.
Sunder
,
R.
,
Porter
,
W. J.
, and
Ashbaugh
,
N. E.
, “
Fatigue Voids and Their Significance
,”
Fatigue Fract. Eng. Mater. Struct.
, Vol.
25
,
2002
, pp.
1015
1024
. https://doi.org/10.1046/j.1460-2695.2002.00565.x
56.
Sunder
,
R.
,
Porter
,
W. J.
, and
Ashbaugh
,
N. E.
, “
The Role of Air in Fatigue Load Interaction
,”
Fatigue Fract. Eng. Mater. Struct.
, Vol.
26
,
2003
, pp.
1
16
. https://doi.org/10.1046/j.1460-2695.2003.00582.x
57.
Sunder
,
R.
, “
On the Hysteretic Nature of Variable-Amplitude Fatigue Crack Growth
,”
Int. J. Fatigue
, Vol.
27
,
2005
, pp.
1494
1498
. https://doi.org/10.1016/j.ijfatigue.2005.06.030
58.
Sunder
,
R.
, “
Fractographic Reassessment of the Significance of Fatigue Crack Closure, Fatigue and Fracture Mechanics
,”
ASTM Spec. Tech. Publ.
, Vol. 1461,
S. R.
Daniewicz
,
J. C.
Newman
, and
K. H.
Schwalbe
, Eds.,
American Society for Testing Materials
,
Philadelphia
, Vol.
34
,
2005
, pp.
22
39
.
59.
Anandan
,
K.
and
Sunder
,
R.
, “
Closure of Part-Through Cracks at the Notch Root
,”
Int. J. Fatigue
, Vol.
9
,
1987
, pp.
217
222
. https://doi.org/10.1016/0142-1123(87)90024-7
60.
Ashbaugh
,
N. E.
,
Porter
,
W. J.
,
Rosenberger
,
A. H.
, and
Sunder
,
R.
, “
Environment-Related Load History Effects in Elevated Temperature Fatigue of a Nickel-Base Super-Alloy
,” Proceedings Fatigue,
Stockholm
,
Sweden
, June 2-7,
2002
, EMAS (2002).
61.
Sunder
,
R.
, “
Effect of Periodic Overloads on Threshold Fatigue Crack Growth in Al-Alloys
,”
Fatigue Fracture Mechanics
, ASTM Spec. Tech. Publ.,
S. R.
Daniewicz
,
J. C.
Newman
,
K. H.
Schwalbe
, Eds., Vol.
1461
,
American Society for Testing Materials
, Vol. 34,
2005
, pp.
557
572
.
62.
Sunder
,
R.
,
Prakash
,
R. V.
, and
Mitchenko
,
E. I.
, “
Growth of Artifically and Naturally Initiating Notch Root Cracks under FALSTAFF Spectrum Loading
,” Report No. 797, AGARD, Paper 10,
1994
.
63.
Sunder
,
R.
,
Prakash
,
R. V.
, and
Mitchenko
,
E. I.
, “
Fractographic Study of Notch Fatigue Crack Closure and Growth Rates
,”
ASTM Spec. Tech. Publ.
,
J. E.
Masters
and
L. N.
Gilbertson
, Eds., Vol.
1203
,
1993
, pp.
113
131
.
64.
Lang
,
M.
, “
A Model for Fatigue Crack Growth, Part I: Phenomenology
,”
Fatigue Fract. Eng. Mater. Struct.
, Vol.
23
, No.
7
,
2000
, pp.
587
601
. https://doi.org/10.1046/j.1460-2695.2000.00297.x
65.
Lados
,
D. A.
,
Apelian
,
D.
, and
Donald
,
J. K.
, “
Fracture Mechanics Analysis for Residual Stress and Crack Closure Corrections
,”
Int. J. Fatigue
, Vol.
29
,
2007
, pp.
687
694
. https://doi.org/10.1016/j.ijfatigue.2006.07.002
66.
Seshadri
,
B. R.
and
Newman
, ,
J. C.
 Jr.
, “
Elastic-Plastic Finite Element Contact Stress Analyses of Tapered Fasteners
,”
4th Joint DoD/FAA/NASA Conference on Aging Aircraft
,
St. Louis
,
MO
, May
2000
.
67.
Seshadri
,
B. R.
and
Newman
,
J. C.
 Jr.
, “
Numerical Investigation of Interference-Fit Tapered Fasteners
,”
USAF Aircraft Structural Integrity Program Conference
,
San Antonio
,
TX
, Dec
2000
.
68.
Ro
,
Y.
,
Agnew.
S. R.
,
Bray
,
G. H.
, and
Gangloff
,
R. P.
, “
Environment-Exposure–Dependent Fatigue Crack Growth Kinetics for Al-Cu-Mg/Li
,”
Mater. Sci. Eng., A
Vol.
468–470
,
2007
, pp.
88
97
. https://doi.org/10.1016/j.msea.2007.01.155
This content is only available via PDF.
You do not currently have access to this content.