Abstract

High chromium content is responsible for the formation of a protective passive surface layer on austenitic stainless steels (ASS). Due to their larger amounts of chromium, superaustenitic stainless steels (SASS) can be chosen for applications with higher corrosion resistance requirements. However, both of them present low hardness and wear resistance that has limited their use for mechanical parts fabrication. Plasma nitriding is a very effective surface treatment for producing harder and wear resistant surface layers on these steel grades, without harming their corrosion resistance if low processing temperatures are employed. In this work UNS S31600 and UNS S31254 SASS samples were plasma nitrided in temperatures from 400 °C to 500 °C for 5 h with 80 % H2–20 % N2 atmosphere at 600 Pa. Nitrided layers were analyzed by optical (OM) and transmission electron microscopy (TEM), x-ray diffraction (XRD), and Vickers microhardness testing. Observations made by optical microscopy showed that N-rich layers were uniform but their thicknesses increased with higher nitriding temperatures. XRD analyses showed that lower temperature layers are mainly composed by expanded austenite, a metastable nitrogen supersaturated phase with excellent corrosion and tribological properties. Samples nitrided at 400 °C produced a 5 μm thick expanded austenite layer. The nitrided layer reached 25 μm in specimens treated at 500 °C. There are indications that other phases are formed during higher temperature nitriding but XRD analysis was not able to determine that phases are iron and/or chromium nitrides, which are responsible for increasing hardness from 850 up to 1100 HV. In fact, observations made by TEM have indicated that formation of fine nitrides, virtually not identified by XRD technique, can begin at lower temperatures and their growth is affected by both thermodynamical and kinetics reasons.

References

1.
Bell
,
T.
,
Mao
,
K.
, and
Sun
,
Y.
, “
Surface Engineering Design: Modelling Surface Engineering Systems for Improved Tribological Performance
,”
Surf. Coatings Technol.
, Vol.
108–109
,
1998
, pp.
360
368
. https://doi.org/10.1016/S0257-8972(98)00623-9
2.
Zhu
,
X.
,
Huang
,
H.
,
Xu
,
K.
, and
He
,
J.
, “
Structure and Properties of Plasma Nitrided Austenitic Stainless Steel
,”
20th ASM Heat Treating Soc. Conf. Proc.
, Vol.
1–2
,
2000
, pp.
217
221
. https://doi.org/10.1361/cp2000ht217
3.
Menthe
,
E.
,
Rie
,
K.-T.
,
Schultze
,
J. W.
, and
Simson
,
S.
, “
Structure and Properties of Plasma Nitrided Stainless Steel
,”
Surf. Coatings Technol.
, Vol.
74–75
,
1995
, pp.
412
416
. https://doi.org/10.1016/0257-8972(95)08246-8
4.
Rivière
,
J. P.
,
Templier
,
C.
,
Declémy
,
A.
,
Redjdal
,
O.
,
Chumlyakov
,
Y.
, and
Abrasonis
,
G.
, “
Microstructure of Expanded Austenite in Ion-Nitrided AISI 316L Single Crystals
,”
Surf. Coatings Technol.
, Vol.
201
,
2007
, pp.
8210
8214
. https://doi.org/10.1016/j.surfcoat.2006.01.080
5.
Christiansen
,
T.
and
Somers
,
M. A. J.
, “
On the Crystallographic Structure of S-Phase
,”
Scr. Mater.
, Vol.
50
,
2004
, pp.
35
37
. https://doi.org/10.1016/j.scriptamat.2003.09.042
6.
Williamson
,
D. L.
,
Ozturk
,
O.
,
Wei
,
R.
, and
Wilbur
,
P. J.
, “
Metastable Phase Formation and Enhanced Diffusion in f.c.c. Alloys Under High Dose, High Flux Nitrogen Implantation at High and Low Ion Energies
,”
Surf. Coatings Technol.
,Vol.
65
,
1994
, pp.
15
23
. https://doi.org/10.1016/S0257-8972(94)80003-0
7.
Sozinov
,
A. L.
,
Balanyuk
,
A. G.
, and
Gavriljuk
,
V. G.
, “
N–N Interaction and Nitrogen Activity in the Iron Base Austenite
,”
Acta Mater.
, Vol.
47
,
1999
, pp.
927
935
. https://doi.org/10.1016/S1359-6454(98)00394-2
8.
Christiansen
,
T. L.
,
Hummelshøj
,
T. S.
, and
Somers
,
M. A. J.
, “
Expanded Austenite, Crystallography and Residual Stress
,”
Surf. Eng.
, Vol.
26
,
2010
, pp.
242
247
. https://doi.org/10.1179/026708410X12506870724316
9.
Dong
,
H.
, “
S-Phase Surface Engineering of Fe–Cr, Co–Cr and Ni–Cr Alloys
,”
Int. Mater. Rev.
, Vol.
55
,
2010
, pp.
65
98
. https://doi.org/10.1179/095066009X12572530170589
10.
Buhagiar
,
J.
,
Li
,
X.
, and
Dong
,
H.
, “
Formation and Microstructural Characterisation of S-Phase Layers in Ni-Free Austenitic Stainless Steels by Low-Temperature Plasma Surface Alloying
,”
Surf. Coatings Technol.
, Vol.
204
,
2009
, pp.
330
335
. https://doi.org/10.1016/j.surfcoat.2009.07.030
11.
Manova
,
D.
,
Eichentopf
,
I.-M.
,
Hirsch
,
D.
,
Mändl
,
S.
,
Neumann
,
H.
, and
Rauschenbach
,
B.
, “
Influence of Microstructure on Nitriding Properties of Stainless Steel
,”
IEEE Trans. Plasma Sci.
, Vol.
34
, No.
4
,
2006
, pp.
1136
1140
. https://doi.org/10.1109/TPS.2006.877746
12.
Li
,
X.Y.
, “
Low Temperature Plasma Nitriding of 316 Stainless Steel-Nature of “S” Phase and Its Thermal Stability
,”
Surf. Eng.
, Vol.
17
, No.
2
,
2001
, pp.
147
152
. https://doi.org/10.1179/026708401101517746
13.
Xu
,
X. L.
,
Wang
,
L.
,
Yu
,
Z.W.
, and
Hei
,
Z. K.
, “
Microstructural Characterization of Plasma Nitrided Austenitic Stainless Steel
,”
Surf. Coatings Technol.
, Vol.
132
,
2000
, pp.
270
274
. https://doi.org/10.1016/S0257-8972(00)00905-1
14.
Fernandes
,
F. A. P.
,
Heck
,
S. C.
,
Pereira
,
R. G.
,
Picon
,
C. A.
,
Nascente
,
P. A. P.
, and
Casteletti
,
L. C.
, “
Ion Nitriding of a Superaustenitic Stainless Steel: Wear and Corrosion Characterization
,”
Surf. Coatings Technol.
, Vol.
204
,
2010
, pp.
3087
3090
. https://doi.org/10.1016/j.surfcoat.2010.02.064
15.
Williams
,
D. B.
and
Barry Carter
,
C.
,
Transmission Electron Microscopy: A Textbook for Materials Science
,
Springer Science and Business Media
,
New York
,
2009
, 760 pp.
16.
Raghavan
,
V.
, “
The Cr-Fe-N-Ni System
,”
J. Phase Equilibria
, Vol.
18
, No.
2
,
1997
, pp.
158
172
. https://doi.org/10.1007/BF02665700
17.
Li
,
X.
,
Samandi
,
M.
,
Dunne
,
D.
, and
Hutchings
,
R.
, “
Evolution of the Microstructure of Austenitic Stainless Steel Nitrogen Implanted at Elevated Temperatures
,”
Surf. Coatings Technol.
, Vol.
71
,
1995
, pp.
175
181
. https://doi.org/10.1016/0257-8972(94)01017-D
18.
He
,
Y.
,
Li
,
Z.
,
Qi
,
H.
, and
Gao
,
W.
, “
Standard Free Energy Change of Formation Per Unit Volume: A New Parameter for Evaluating Nucleation and Growth of Oxides, Sulphides, Carbides and Nitrides
,”
Mater. Res. Innovation
, Vol.
1
,
1997
, pp.
157
160
. https://doi.org/10.1007/s100190050034
19.
Christiansen
,
T. L.
and
Somers
,
M. A. J.
, “
Controlled Dissolution of Colossal Quantities of Nitrogen in Stainless Steel
,”
Metallurg. Mater. Trans. A
, Vol.
37A
,
2006
, pp.
675
682
. https://doi.org/10.1007/s11661-006-0039-5
20.
Meletis
,
E. I.
,
Singh
,
V.
, and
Jiang
,
J. C.
, “
On the Single Phase Formed During Low-Temperature Plasma Nitriding of Austenitic Stainless Steels
,”
J. Mater. Sci. Lett.
, Vol.
21
,
2002
, pp.
1171
1174
. https://doi.org/10.1023/A:1016504015324
21.
Mitchell
,
D. R. G.
,
Attard
,
D. J.
,
Collins
,
G. A.
, and
Short
,
K. T.
, “
Characterisation of PI3 and RF Plasma Nitrided Austenitic Stainless Steels Using Plan and Cross-Sectional TEM Techniques
,”
Surf. Coatings Technol.
, Vol.
165
,
2003
, pp.
107
118
. https://doi.org/10.1016/S0257-8972(02)00741-7
22.
Xu
,
X.
,
Wang
,
L.
,
Yu
,
Z.
,
Qiang
,
J.
, and
Hei
,
Z.
, “
Study of Microstructure of Low-Temperature Plasma-Nitrided AISI 304 Stainless Steel
,”
Metallurg. Mater. Trans. A
, Vol.
31A
,
2000
, pp.
1193
1199
. https://doi.org/10.1007/s11661-000-0115-1
This content is only available via PDF.
You do not currently have access to this content.