Abstract

Two relatively new approaches to neutron cross section data evaluation are described. They are known collectively as Unified Monte Carlo (versions UMC-G and UMC-B). Comparisons are made between these two methods, as well as with the well-known generalized least-squares (GLSQ) technique, through the use of simple, hypothetical (toy) examples. These new Monte Carlo methods are based on stochastic sampling of probability functions that are constructed with the use of theoretical and experimental data by applying the principle of maximum entropy. No further assumptions are involved in either UMC-G or UMC-B. However, the GLSQ procedure requires the linearization of non-linear terms, such as those that occur when cross section ratio data are included in an evaluation. It is shown that these two stochastic techniques yield results that agree well with each other, and with the GLSQ method, when linear data are involved, or when the perturbations due to data discrepancies and nonlinearity effects are small. Otherwise, there can be noticeable differences. The present investigation also demonstrates, as observed in earlier work, that the least-squares approach breaks down when these conditions are not satisfied. This paper also presents an actual evaluation of the 55Mn(n,γ)56Mn neutron dosimetry reaction cross section in the energy range from 100 keV to 20 MeV, which was performed using both GLSQ and UMC-G approaches.

References

1.
Smith
,
D. L.
,
Probability, Statistics, and Data Uncertainties in Nuclear Science and Technology
,
American Nuclear Society
,
LaGrange Park, IL
,
1991
.
2.
Smith
,
D. L.
, “
A Unified Monte Carlo Approach to Fast Neutron Cross Section Data Evaluation
,”
Proceedings of the 8th International Topical Meeting on Nuclear Applications and Utilities of Accelerators
,
American Nuclear Society
,
LaGrange Park, IL
, July 29–Aug 2,
2007
, p. 736.
3.
Chadwick
,
M. B.
,
Obložinský
,
P.
,
Herman
,
M.
,
Greene
,
N. M.
,
McKnight
,
R. D.
,
Smith
,
D. L.
,
Young
,
P. G.
,
MacFarlane
,
R. E.
,
Hale
,
G. M.
,
Frankle
,
S. C.
,
Kahler
,
A. C.
,
Kawano
,
T.
,
Little
,
R. C.
,
Madland
,
D. G.
,
Moller
,
P.
,
Mosteller
,
R. D.
,
Page
,
P. R.
,
Talou
,
P.
,
Trellue
,
T. H.
, and
White
,
M. C.
, “
ENDF/B-VII. 0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology
,”
Nucl. Data Sheets
, Vol.
107
,
2006
, p. 2931. https://doi.org/10.1016/j.nds.2006.11.001
4.
Capote
,
R.
and
Smith
,
D. L.
, “
An Investigation of the Performance of the Unified Monte Carlo Method of Neutron Cross Section Data Evaluation
,”
Nucl. Data Sheets
, Vol.
109
,
2008
, p. 2768. https://doi.org/10.1016/j.nds.2008.11.007
5.
Capote
,
R.
and
Smith
,
D. L.
, “
Unified Monte Carlo and Mixed Probability Functions
,”
J. Kor. Phys. Soc.
, Vol.
59
, No.
2
, August
2011
, pp.
1284
1287
.
6.
Shannon
,
C. E.
, “
A Mathematical Theory of Communication
,”
Bell Syst. Tech. J.
, Vol.
27
,
1948
, pp. 379–423, 623–656.
7.
Jaynes
,
E. T.
, “
Where Do We Stand on Maximum Entropy
,”
The Maximum Entropy Formalism
,
R. D.
Legine
and
M.
Tribus
, Eds.,
MIT Press
,
Cambridge, MA
,
1978
.
8.
Smith
,
D. L.
, “
Covariance Matrices for Nuclear Cross Sections Derived from Nuclear Model Calculations
,” Report ANL/NDM-159,
Argonne National Laboratory
, Argonne, IL,
2004
.
9.
Smith
,
D. L.
, “
A Least-Squares Computational ‘Tool Kit
,’ ” Report ANL/NDM-128,
Argonne National Laboratory
, Argonne, IL,
1993
.
10.
Koning
,
A.
and
Rochman
,
D.
, “
Towards Sustainable Nuclear Energy: Putting Nuclear Physics to Work
,”
Ann. Nucl. Energy
, Vol.
35
,
2008
, p. 2024. https://doi.org/10.1016/j.anucene.2008.06.004
11.
International Atomic Energy Agency
,
2011
, “
Experimental Nuclear Reaction Data (EXFOR)
,” http://www-nds.iaea.org/exfor/exfor.htm (Last accessed 14 Dec
2011
).
12.
Capote
,
R.
,
Smith
,
D. L.
, and
Trkov
,
A.
, “
Nuclear Data Evaluation Methodology Including Estimates of Covariances
,”
EPJ Web of Conferences
, Vol.
8
,
2010
, p. 04001. https://doi.org/10.1051/epjconf/20100804001
13.
Herman
,
M.
,
Capote
,
R.
,
Carlson
,
B. V.
,
Obloźinský
,
P.
,
Sin
,
M.
,
Trkov
,
A.
,
Wienke
,
H.
, and
Zerkin
,
V.
,“
EMPIRE: Nuclear Reaction Model Code System for Data Evaluation
,”
Nucl. Data Sheets
, Vol.
108
,
2007
, pp.
2655
2715
. https://doi.org/10.1016/j.nds.2007.11.003
14.
Herman
,
M.
,
Capote
,
R.
,
Obložinský
,
P.
,
Young
,
P. G.
,
Goriely
,
S.
,
Belgya
,
T.
,
Ignatyuk
,
A. V.
,
Koning
,
A. J.
,
Hilaire
,
S.
,
Plujko
,
V. A.
,
Avrigeanu
,
M.
,
Bersillon
,
O.
,
Chadwick
,
M. B.
,
Fukahori
,
T.
,
Ge
,
Zhigang
,
Han
,
Yinlu
,
Kailas
,
S.
,
Kopecky
,
J.
,
Maslov
,
V. M.
,
Reffo
,
G.
,
Sin
,
M.
,
Soukhovitskii
,
E. Sh.
, and
Talou
,
P.
, “
RIPL—Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations
,”
Nucl. Data Sheets
, Vol.
110
,
2009
, pp.
3107
3214
. https://doi.org/10.1016/j.nds.2009.10.004
This content is only available via PDF.
You do not currently have access to this content.