This paper presents a new tool wear monitoring and alarm system that is based on logical analysis of data (LAD). LAD is a data-driven combinatorial optimization technique for knowledge discovery and pattern recognition. The system is a nonintrusive online device that measures the cutting forces and relates them to tool wear through learned patterns. It is developed during turning titanium metal matrix composites (TiMMCs). These are a new generation of materials which have proven to be viable in various industrial fields such as biomedical and aerospace. Since they are quite expensive, our objective is to increase the tool life by giving an alarm at the right moment. The proposed monitoring system is tested by using the experimental results obtained under sequential different machining conditions. External and internal factors that affect the turning process are taken into consideration. The system's alarm limit is validated and is compared to the limit obtained when the statistical proportional hazards model (PHM) is used. The results show that the proposed system that is based on using LAD detects the worn patterns and gives a more accurate alarm for cutting tool replacement.

References

1.
Shi
,
D.
, and
Gindy
,
N. N.
,
2007
, “
Tool Wear Predictive Model Based on Least Squares Support Vector Machines
,”
Mech. Syst. Signal Process.
,
21
(
4
), pp.
1799
1814
.10.1016/j.ymssp.2006.07.016
2.
Li
,
B.
,
2012
, “
A Review of Tool Wear Estimation Using Theoretical Analysis and Numerical Simulation Technologies
,”
Int. J. Refract. Met. Hard Mater.
,
35
, pp.
143
151
.10.1016/j.ijrmhm.2012.05.006
3.
Sick
,
B.
,
2002
, “
On-Line and Indirect Tool Wear Monitoring in Turning With Artificial Neural Networks: A Review of More Than a Decade of Research
,”
Mech. Syst. Signal Process.
,
16
(
4
), pp.
487
546
.10.1006/mssp.2001.1460
4.
Jemielniak
,
K.
,
1999
, “
Commercial Tool Condition Monitoring Systems
,”
Int. J. Adv. Manuf. Technol.
,
15
(
10
), pp.
711
721
.10.1007/s001700050123
5.
Byrne
,
G.
,
Dornfeld
,
D.
,
Inasaki
,
I.
,
Ketteler
,
G.
,
König
,
W.
, and
Teti
,
R.
,
1995
, “
Tool Condition Monitoring (TCM)—The Status of Research and Industrial Application
,”
CIRP Ann.-Manuf. Technol.
,
44
(
2
), pp.
541
567
.10.1016/S0007-8506(07)60503-4
6.
Damodarasamy
,
S.
, and
Raman
,
S.
,
1993
, “
An Inexpensive System for Classifying Tool Wear States Using Pattern Recognition
,”
Wear
,
170
(
2
), pp.
149
160
.10.1016/0043-1648(93)90235-E
7.
Purushothaman
,
S.
, and
Srinivasa
,
Y.
,
1994
, “
A Back-Propagation Algorithm Applied to Tool Wear Monitoring
,”
Int. J. Mach. Tools Manuf.
,
34
(
5
), pp.
625
631
.10.1016/0890-6955(94)90047-7
8.
Kang
,
J.
,
Kang
,
N.
,
Feng
,
C.-J.
, and
Hu
,
H.-Y.
,
2007
, “
Research on Tool Failure Prediction and Wear Monitoring Based hmm Pattern Recognition Theory
,”
IEEE
International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)
, Beijing, Nov. 2–4, pp.
1167
1172
10.1109/ICWAPR.2007.4421609.
9.
Schrock
,
D. J.
,
Kang
,
D.
,
Bieler
,
T. R.
, and
Kwon
,
P.
,
2014
, “
Phase Dependent Tool Wear in Turning Ti-6Al-4V Using Polycrystalline Diamond and Carbide Inserts
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041018
.10.1115/1.4027674
10.
Tail
,
M.
,
Yacout
,
S.
, and
Balazinski
,
M.
,
2010
, “
Replacement Time of a Cutting Tool Subject to Variable Speed
,”
Proc. Inst. Mech. Eng., Part B
,
224
(
3
), pp.
373
383
.10.1243/09544054JEM1693
11.
Wang
,
W.
,
2004
, “
Proportional Hazards Regression Models With Unknown Link Function and Time-Dependent Covariates
,”
Stat. Sin.
,
14
(
3
), pp.
885
906
.
12.
Kalbfleisch
,
J. D.
, and
Prentice
,
R. L.
,
2011
,
The Statistical Analysis of Failure Time Data
,
Wiley
,
New York
.
13.
Banjevic
,
D.
,
Jardine
,
A.
,
Makis
,
V.
, and
Ennis
,
M.
,
2001
, “
A Control-Limit Policy and Software for Condition-Based Maintenance Optimization
,”
INFOR-OTTAWA
,
39
(
1
), pp.
32
50
.
14.
Liu
,
H.
,
1997
, “
Modeling and Optimal Control of Deteriorating Production Processes
,” Ph.D. thesis,
University of Toronto
,
Toronto, ON, Canada
.
15.
Wang
,
W.
, and
Hu
,
C.
,
2006
, “
Proportional Hazards Regression Models
,”
Springer Handbook of Engineering Statistics
,
Springer
,
New York
, pp.
387
396
10.1007/978-1-84628-288-1_21.
16.
Azouzi
,
R.
, and
Guillot
,
M.
,
1997
, “
On-Line Prediction of Surface Finish and Dimensional Deviation in Turning Using Neural Network Based Sensor Fusion
,”
Int. J. Mach. Tools Manuf.
,
37
(
9
), pp.
1201
1217
.10.1016/S0890-6955(97)00013-8
17.
Hammer
,
P. L.
, and
Bonates
,
T. O.
,
2006
, “
Logical Analysis of Data—An Overview: From Combinatorial Optimization to Medical Applications
,”
Ann. Oper. Res.
,
148
(
1
), pp.
203
225
.10.1007/s10479-006-0075-y
18.
Yacout
,
S.
,
2010
, “
Fault Detection and Diagnosis for Condition Based Maintenance Using the Logical Analysis of Data
,”
40th International Conference on Computers and Industrial Engineering
,
IEEE
Computer Society
, Awaji,
Japan
, July 25–28, pp.
1
6
10.1109/ICCIE.2010.5668357.
19.
Bores
,
E.
,
Hammer
,
P. L.
,
Ibaraki
,
T.
,
Kogan
,
A.
,
Mayoraz
,
E.
, and
Muchnik
,
I.
,
2000
, “
An Implementation of Logical Analysis of Data
,”
IEEE Trans. Knowl. Data Eng.
,
12
(
2
), pp.
292
306
.10.1109/69.842268
20.
Hammer
,
P. L.
,
1986
, “
Partially Defined Boolean Functions and Cause-Effect Relationships
,”
International Conference on Multi-Attribute Decision Making Via or-Based Expert Systems
.
21.
Ryoo
,
H. S.
, and
Jang
,
I. Y.
,
2009
, “
MILP Approach to Pattern Generation in Logical Analysis of Data
,”
Discrete Appl. Math.
,
157
(
4
), pp.
749
761
.10.1016/j.dam.2008.07.005
22.
Mortada
,
M.-A.
,
Yacout
,
S.
, and
Lakis
,
A.
,
2011
, “
Diagnosis of Rotor Bearings Using Logical Analysis of Data
,”
J. Qual. Maint. Eng.
,
17
(
4
), pp.
371
397
.10.1108/13552511111180186
23.
Gray
,
A. E.
,
Seidmann
,
A.
, and
Stecke
,
K. E.
,
1993
, “
A Synthesis of Decision Models for Tool Management in Automated Manufacturing
,”
Manage. Sci.
,
39
(
5
), pp.
549
567
.10.1287/mnsc.39.5.549
24.
Rangwala
,
S. S.
,
1988
,
Machining Process Characterization and Intelligent Tool Condition Monitoring Using Acoustic Emission Signal Analysis
,
University of California
,
Berkeley, CA
.
25.
Yacout
,
S.
,
Salamanca
,
D.
, and
Mortada
,
M.-A.
,
2012
, Patent Cooperation Treaty PCT/CA2011/000876, No. Wo 2012/009804 A1.
26.
Mazzuchi
,
T. A.
, and
Soyer
,
R.
,
1989
, “
Assessment of Machine Tool Reliability Using a Proportional Hazards Model
,”
Nav. Res. Logist. (NRL)
,
36
(
6
), pp.
765
777
.10.1002/1520-6750(198912)36:6<765::AID-NAV3220360603>3.0.CO;2-C
27.
Makis
,
V.
,
1995
, “
Optimal Replacement of a Tool Subject to Random Failure
,”
Int. J. Prod. Econ.
,
41
(
1
), pp.
249
256
.10.1016/0925-5273(95)00061-5
28.
Huang
,
Y.
, and
Liang
,
S. Y.
,
2005
, “
Modeling of Cutting Forces Under Hard Turning Conditions Considering Tool Wear Effect
,”
ASME J. Manuf. Sci. Eng.
,
127
(
2
), pp.
262
270
.10.1115/1.1852571
29.
Aven
,
T.
, and
Bergman
,
B.
,
1986
, “
Optimal Replacement Times: A General Set-Up
,”
J. Appl. Probab.
,
23
, pp.
432
442
.10.2307/3214185
30.
Makis
,
V.
, and
Jardine
,
A. K.
,
1992
, “
Optimal Replacement in the Proportional Hazards Model
,”
INFOR
,
30
(
1
), pp.
172
183
.
31.
Wu
,
X.
, and
Ryan
,
S. M.
,
2011
, “
Optimal Replacement in the Proportional Hazards Model With Semi-Markovian Covariate Process and Continuous Monitoring
,”
IEEE Trans. Reliab.
,
60
(
3
), pp.
580
589
.10.1109/TR.2011.2161049
32.
Kannan
,
S.
,
Balazinski
,
M.
, and
Kishawy
,
H.
,
2006
, “
Flank Wear Progression During Machining Metal Matrix Composites
,”
ASME J. Manuf. Sci. Eng.
,
128
(
3
), pp.
787
791
.10.1115/1.2164508
33.
Tomac
,
N.
,
Tannessen
,
K.
, and
Rasch
,
F. O.
,
1992
, “
Machinability of Particulate Aluminium Matrix Composites
,”
CIRP Ann.-Manuf. Technol.
,
41
(
1
), pp.
55
58
.10.1016/S0007-8506(07)61151-2
34.
Wang
,
X.
, and
Kwon
,
P. Y.
,
2014
, “
WC/Co Tool Wear in Dry Turning of Commercially Pure Aluminium
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031006
.10.1115/1.4026514
You do not currently have access to this content.