Abstract

Ultrasonic testing is a promising alternative quality inspection technique to the expensive microscopic imaging to characterize metal matrix nanocomposites. However, due to the complexity of the wave–microstructure interaction, and the difficulty in fabricating nanocomposites of different microstructural features, it is very challenging to build reliable relationships between ultrasonic testing results and nanocomposites quality. In this research, we propose a microstructure modeling and wave propagation simulation method to simulate ultrasonic attenuation characteristic for A206–Al2O3 metal matrix nanocomposites (MMNCs). In particular, a modified Voronoi diagram is used to reproduce the microstructures and the numeric method elastodynamic finite integration technique (EFIT) is used to simulate the wave propagation through the generated microstructures. Linear mixed effects model (LME) is used to quantify the between-curve variation of ultrasonic attenuation from both experiment and simulation. Permutation test is employed to quantify the similarity of the quantified variation between experiment and simulation. This research supports the experimental results through the simulation approach and provides a better understanding of the relationship between attenuation curves and the microstructures.

References

1.
Choi
,
H.
,
Cho
,
W.-H.
,
Konishi
,
H.
,
Kou
,
S.
, and
Li
,
X.
,
2013
, “
Nanoparticle-Induced Superior Hot Tearing Resistance of A206 Alloy
,”
Metall. Mater. Trans. A
,
44
(
4
), pp.
1897
1907
.10.1007/s11661-012-1531-8
2.
Wu
,
J.
,
Zhou
,
S.
, and
Li
,
X.
,
2013
, “
Acoustic Emission Monitoring for Ultrasonic Cavitation Based Dispersion Process
,”
ASME J. Manuf. Sci. Eng.
,
135
(
3
), p.
031015
.10.1115/1.4024041
3.
Wu
,
J.
,
Zhou
,
S.
, and
Li
,
X.
,
2015
, “
Ultrasonic Attenuation Based Inspection Method for Scale-Up Production of A206–Al2O3 Metal Matrix Nanocomposites
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
011013
.10.1115/1.4028128
4.
Sun
,
Y.
,
2012
, “
Microstructure Modification by Nanoparticles in Aluminum and Magnesium Matrix Nanocomposites
,” Master's thesis, University of Wisconsin–Madison, Madison, WI.
5.
Ghavam
,
K.
,
Bagheriasl
,
R.
, and
Worswick
,
M. J.
,
2013
, “
Analysis of Nonisothermal Deep Drawing of Aluminum Alloy Sheet With Induced Anisotropy and Rate Sensitivity at Elevated Temperatures
,”
ASME J. Manuf. Sci. Eng.
,
136
(
1
), p.
011006
.10.1115/1.4025407
6.
Lou
,
M.
,
Li
,
Y. B.
,
Li
,
Y. T.
, and
Chen
,
G. L.
,
2013
, “
Behavior and Quality Evaluation of Electroplastic Self-Piercing Riveting of Aluminum Alloy and Advanced High Strength Steel
,”
ASME J. Manuf. Sci. Eng.
,
135
(
1
), p.
011005
.10.1115/1.4023256
7.
Yang
,
Y.
, and
Li
,
X.
,
2007
, “
Ultrasonic Cavitation-Based Nanomanufacturing of Bulk Aluminum Matrix Nanocomposites
,”
ASME J. Manuf. Sci. Eng.
,
129
(
2
), pp.
252
255
.10.1115/1.2194064
8.
Li
,
X.
,
Yang
,
Y.
, and
Weiss
,
D.
,
2008
, “
Theoretical and Experimental Study on Ultrasonic Dispersion of Nanoparticles for Strengthening Cast Aluminum Alloy A356
,”
Met. Sci. Technol.
,
26
(
2
), pp.
12
20
.
9.
Drury
,
J. C.
,
2004
,
Ultrasonic Flaw Detection for Technicians
,
Silverwing Limited
,
Swansea, UK
.
10.
Ying
,
Y.
,
2012
, “
A Data-Driven Framework for Ultrasonic Structural Health Monitoring of Pipes
,” Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA.
11.
Schmerr
,
L. W.
,
1998
,
Fundamentals of Ultrasonic Nondestructive Evaluation: A Modeling Approach
,
Plenum Press
,
New York
.
12.
Krautkrämer
,
J.
, and
Krautkrämer
,
H.
,
1990
,
Ultrasonic Testing of Materials
,
Springer Science & Business Media
,
New York
.
13.
Szilard
,
J.
,
1982
,
Ultrasonic Testing: Non-Conventional Testing Techniques
,
Wiley
,
New York
.
14.
Lowet
,
G.
, and
Van der Perre
,
G.
,
1996
, “
Ultrasound Velocity Measurement in Long Bones: Measurement Method and Simulation of Ultrasound Wave Propagation
,”
J. Biomech.
,
29
(
10
), pp.
1255
1262
.10.1016/0021-9290(96)00054-1
15.
Mathieu
,
V.
,
Anagnostou
,
F.
,
Soffer
,
E.
, and
Haiat
,
G.
,
2011
, “
Numerical Simulation of Ultrasonic Wave Propagation for the Evaluation of Dental Implant Biomechanical Stability
,”
J. Acoust. Soc. Am.
,
129
(
6
), pp.
4062
4072
.10.1121/1.3586788
16.
Sears
,
F. M.
, and
Bonner
,
B. P.
,
1981
, “
Ultrasonic Attenuation Measurement by Spectral Ratios Utilizing Signal Processing Techniques
,”
IEEE Trans. Geosci. Remote Sens.
,
19
(
2
), pp.
95
99
.10.1109/TGRS.1981.350359
17.
Li
,
M.
,
Landers
,
R. G.
, and
Leu
,
M. C.
,
2014
, “
Modeling, Analysis, and Simulation of Paste Freezing in Freeze-Form Extrusion Fabrication of Thin-Wall Parts
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061003
.10.1115/1.4028577
18.
Niu
,
L.
,
Cao
,
H.
,
He
,
Z.
, and
Li
,
Y.
,
2014
, “
Dynamic Modeling and Vibration Response Simulation for High Speed Rolling Ball Bearings With Localized Surface Defects in Raceways
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041015
.10.1115/1.4027334
19.
Shen
,
N.
, and
Ding
,
H.
,
2014
, “
Physics-Based Microstructure Simulation for Drilled Hole Surface in Hardened Steel
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
044504
.10.1115/1.4027732
20.
Virieux
,
J.
,
1986
, “
P-SV Wave Propagation in Heterogeneous Media: Velocity–Stress Finite-Difference Method
,”
Geophysics
,
51
(
4
), pp.
889
901
.10.1190/1.1442147
21.
Kampanis
,
N. A.
,
Dougalis
,
V.
, and
Ekaterinaris
,
J. A.
,
2008
,
Effective Computational Methods for Wave Propagation
,
CRC Press
,
Boca Raton, FL
.
22.
Bossy
,
E.
, and
Grimal
,
Q.
,
2011
, “
Numerical Methods for Ultrasonic Bone Characterization
,”
Bone Quantitative Ultrasound
,
Springer
,
New York
, pp.
181
228
.10.1007/978-94-007-0017-8_8
23.
Fellinger
,
P.
,
Marklein
,
R.
,
Langenberg
,
K.
, and
Klaholz
,
S.
,
1995
, “
Numerical Modeling of Elastic Wave Propagation and Scattering With EFIT—Elastodynamic Finite Integration Technique
,”
Wave Motion
,
21
(
1
), pp.
47
66
.10.1016/0165-2125(94)00040-C
24.
Haïat
,
G.
,
Naili
,
S.
,
Grimal
,
Q.
,
Talmant
,
M.
,
Desceliers
,
C.
, and
Soize
,
C.
,
2009
, “
Influence of a Gradient of Material Properties on Ultrasonic Wave Propagation in Cortical Bone: Application to Axial Transmission
,”
J. Acoust. Soc. Am.
,
125
(
6
), pp.
4043
4052
.10.1121/1.3117445
25.
Protopappas
,
V. C.
,
Kourtis
,
I. C.
,
Kourtis
,
L. C.
,
Malizos
,
K. N.
,
Massalas
,
C. V.
, and
Fotiadis
,
D. I.
,
2007
, “
Three-Dimensional Finite Element Modeling of Guided Ultrasound Wave Propagation in Intact and Healing Long Bones
,”
J. Acoust. Soc. Am.
,
121
(
6
), pp.
3907
3921
.10.1121/1.2354067
26.
Gopalakrishnan
,
S.
,
Chakraborty
,
A.
, and
Mahapatra
,
D. R.
,
2007
,
Spectral Finite Element Method: Wave Propagation, Diagnostics and Control in Anisotropic and Inhomogeneous Structures
,
Springer
,
New York
.
27.
Bossy
,
E.
,
Laugier
,
P.
,
Peyrin
,
F.
, and
Padilla
,
F.
,
2007
, “
Attenuation in Trabecular Bone: A Comparison Between Numerical Simulation and Experimental Results in Human Femur
,”
J. Acoust. Soc. Am.
,
122
(
4
), pp.
2469
2475
.10.1121/1.2766779
28.
Leckey
,
C. A.
,
Miller
,
C. A.
, and
Hinders
,
M. K.
,
2011
, “
3D Ultrasonic Wave Simulations for Structural Health Monitoring
,” Report No. NF1676L-13045.
29.
Guz
,
I. A.
, and
Rushchitsky
,
J.
,
2007
, “
Computational Simulation of Harmonic Wave Propagation in Fibrous Micro-and Nanocomposites
,”
Compos. Sci. Technol.
,
67
(
5
), pp.
861
866
.10.1016/j.compscitech.2006.01.032
30.
Maio
,
L.
,
Memmolo
,
V.
,
Ricci
,
F.
,
Boffa
,
N.
,
Monaco
,
E.
, and
Pecora
,
R.
,
2015
, “
Ultrasonic Wave Propagation in Composite Laminates by Numerical Simulation
,”
Compos. Struct.
,
121
, pp.
64
74
.10.1016/j.compstruct.2014.10.014
31.
Yang
,
Y.
,
Lan
,
J.
, and
Li
,
X.
,
2004
, “
Study on Bulk Aluminum Matrix Nano-Composite Fabricated by Ultrasonic Dispersion of Nano-Sized SiC Particles in Molten Aluminum Alloy
,”
Mater. Sci. Eng. A
,
380
(
1
), pp.
378
383
.10.1016/j.msea.2004.03.073
32.
Nave
,
M.
,
Dahle
,
A.
, and
St John
,
D.
, “
The Role of Zinc in the Eutectic Solidification of Magnesium–Aluminium–Zinc Alloys
,” Magnesium Technology 2000, the Minerals, Metals, and Materials Society, pp.
243
250
.
33.
Ghosh
,
S.
,
Nowak
,
Z.
, and
Lee
,
K.
,
1997
, “
Quantitative Characterization and Modeling of Composite Microstructures by Voronoi Cells
,”
Acta Mater.
,
45
(
6
), pp.
2215
2234
.10.1016/S1359-6454(96)00365-5
34.
Fan
,
Z.
,
Wu
,
Y.
,
Zhao
,
X.
, and
Lu
,
Y.
,
2004
, “
Simulation of Polycrystalline Structure With Voronoi Diagram in Laguerre Geometry Based on Random Closed Packing of Spheres
,”
Comput. Mater. Sci.
,
29
(
3
), pp.
301
308
.10.1016/j.commatsci.2003.10.006
35.
Du
,
Q.
,
Faber
,
V.
, and
Gunzburger
,
M.
,
1999
, “
Centroidal Voronoi Tessellations: Applications and Algorithms
,”
SIAM Rev.
,
41
(
4
), pp.
637
676
.10.1137/S0036144599352836
36.
Suzudo
,
T.
, and
Kaburaki
,
H.
,
2009
, “
An Evolutional Approach to the Numerical Construction of Polycrystalline Structures Using the Voronoi Tessellation
,”
Phys. Lett. A
,
373
(
48
), pp.
4484
4488
.10.1016/j.physleta.2009.09.072
37.
Krautkrämer
,
J.
, and
Krautkrämer
,
H.
,
1983
,
Ultrasonic Testing of Materials
,
Springer
,
New York
.
38.
Chassignole
,
B.
,
El Guerjouma
,
R.
,
Ploix
,
M.-A.
, and
Fouquet
,
T.
,
2010
, “
Ultrasonic and Structural Characterization of Anisotropic Austenitic Stainless Steel Welds: Towards a Higher Reliability in Ultrasonic Non-Destructive Testing
,”
NDT & E Int.
,
43
(
4
), pp.
273
282
.10.1016/j.ndteint.2009.12.005
39.
Chinta
,
P. K.
, and
Kleinert
,
W.
,
2014
,
Elastic Wave Modeling in Complex Geometries Using Elastodynamic Finite Integration Technique
,
11th European Conference on Non-Destructive Testing (ECNDT 2014)
, Prague, Czech Republic, Oct. 6–10.
40.
Villagomez
,
C.
,
Medina
,
L.
, and
Pereira
,
W.
,
2012
, “
Open Source Acoustic Wave Solver of Elastodynamic Equations for Heterogeneous Isotropic Media
,”
IEEE International on Ultrasonics Symposium (IUS)
, pp.
1521
1524
.
41.
Zheng
,
R.
,
Le
,
L. H.
,
Sacchi
,
M. D.
,
Ta
,
D.
, and
Lou
,
E.
,
2007
, “
Spectral Ratio Method to Estimate Broadband Ultrasound Attenuation of Cortical Bones In Vitro Using Multiple Reflections
,”
Phys. Med. Biol.
,
52
(
19
), p.
5855
.10.1088/0031-9155/52/19/008
42.
Grin
,
Y.
,
Wagner
,
F. R.
,
Armbrüster
,
M.
,
Kohout
,
M.
,
Leithe-Jasper
,
A.
,
Schwarz
,
U.
,
Wedig
,
U.
, and
von Schnering
,
H. G.
,
2006
, “
CuAl 2 Revisited: Composition, Crystal Structure, Chemical Bonding, Compressibility and Raman Spectroscopy
,”
J. Solid State Chem.
,
179
(
6
), pp.
1707
1719
.10.1016/j.jssc.2006.03.006
43.
Zhou
,
W.
,
Liu
,
L.
,
Li
,
B.
,
Song
,
Q.
, and
Wu
,
P.
,
2009
, “
Structural, Elastic, and Electronic Properties of Al–Cu Intermetallic From First-Principles Calculations
,”
J. Electron. Mater.
,
38
(
2
), pp.
356
364
.10.1007/s11664-008-0587-0
44.
Gałecki
,
A.
, and
Burzykowski
,
T.
,
2013
,
Linear Mixed-Effects Models Using R: A Step-By-Step Approach
,
Springer
,
New York
.
45.
Pinheiro
,
J. C.
, and
Bates
,
D. M.
,
2000
,
Mixed-Effects Models in S and S-PLUS
,
Springer Science & Business Media
,
New York
.
46.
Anderson
,
T. W.
,
2003
,
An Introduction to Multivariate Statistical Analysis
,
Wiley
,
New York
.
47.
Good
,
P.
,
2000
,
Permutation Tests
,
Springer
,
New York
.10.1007/978-1-4757-3235-1
48.
Benjamini
,
Y.
, and
Hochberg
,
Y.
,
1995
, “
Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing
,”
J. R. Stat. Soc. Ser. B (Methodological)
,
57
(
1
), pp.
289
300
.http://www.jstor.org/stable/2346101
49.
Virieux
,
J.
,
1984
, “
SH-Wave Propagation in Heterogeneous Media: Velocity–Stress Finite-Difference Method
,”
Geophysics
,
49
(
11
), pp.
1933
1942
.10.1190/1.1441605
You do not currently have access to this content.