Abstract

This study proposes a comprehensive experiment-based method to determine stress field and slip lines in metal cutting process. The chip geometry and workpiece's strain and strain rate fields are determined using an in situ imaging technique. The two-dimensional (2D) heat transfer problem for the steady-state cutting process is solved to derive the cutting temperature, and the flow stresses of work material in the main deformation zone are calculated based on the plasticity theory. Furthermore, the stress field is comprehensively determined to satisfy the stress equilibrium, friction law along the tool-chip interface, and traction-free boundary condition along the uncut chip surface. In addition, slip lines in the main deformation zone are derived according to the direction of maximum shear stress without the assumption of perfect rigid-plastic material. The proposed method is validated by comparing the cutting forces calculated based on the obtained stress field with the experimental results.

References

1.
Huang
,
X. D.
,
Zhang
,
X. M.
, and
Ding
,
H.
,
2016
, “
A Novel Relaxation-Free Analytical Method for Prediction of Residual Stress Induced by Mechanical Load During Orthogonal Machining
,”
Int. J. Mech. Sci.
,
115
, pp.
299
309
. 10.1016/j.ijmecsci.2016.06.024
2.
Liang
,
S.
, and
Su
,
J.-C.
,
2007
, “
Residual Stress Modeling in Orthogonal Machining
,”
CIRP Ann.
,
56
(
1
), pp.
65
68
. 10.1016/j.cirp.2007.05.018
3.
Childs
,
T.
,
2013
, “
Ductile Shear Failure Damage Modelling and Predicting Built-Up Edge in Steel Machining
,”
J. Mater. Process. Technol.
,
213
(
11
), pp.
1954
1969
. 10.1016/j.jmatprotec.2013.05.017
4.
Sun
,
J.
, and
Guo
,
Y. B.
,
2009
, “
Material Flow Stress and Failure in Multiscale Machining Titanium Alloy Ti-6Al-4 V
,”
Int. J. Adv. Manuf. Technol.
,
41
(
7–8
), pp.
651
659
. 10.1007/s00170-008-1521-6
5.
Yen
,
Y.-C.
,
Söhner
,
J.
,
Lilly
,
B.
, and
Altan
,
T.
,
2004
, “
Estimation of Tool Wear in Orthogonal Cutting Using the Finite Element Analysis
,”
J. Mater. Process. Technol.
,
146
(
1
), pp.
82
91
. 10.1016/S0924-0136(03)00847-1
6.
Li
,
G.
,
Yi
,
S.
,
Wen
,
C.
, and
Ding
,
S.
,
2018
, “
Wear Mechanism and Modeling of Tribological Behavior of Polycrystalline Diamond Tools When Cutting Ti6Al4 V
,”
ASME J. Manuf. Sci. Eng.
,
140
(
12
), p.
121011
. 10.1115/1.4041327
7.
Wang
,
F.
,
Tao
,
Q.
,
Xiao
,
L.
,
Hu
,
J.
, and
Xu
,
L.
,
2018
, “
Simulation and Analysis of Serrated Chip Formation in Cutting Process of Hardened Steel Considering Ploughing-Effect
,”
J. Mech. Sci. Technol.
,
32
(
5
), pp.
2029
2037
. 10.1007/s12206-018-0411-6
8.
Fang
,
N.
,
Jawahir
,
I.
, and
Oxley
,
P.
,
2001
, “
A Universal Slip-Line Model With Non-Unique Solutions for Machining With Curled Chip Formation and a Restricted Contact Tool
,”
Int. J. Mech. Sci.
,
43
(
2
), pp.
557
580
. 10.1016/S0020-7403(99)00117-4
9.
Fang
,
N.
,
2003
, “
Slip-Line Modeling of Machining With a Rounded-Edge Tool—Part I: New Model and Theory
,”
J. Mech. Phys. Solids
,
51
(
4
), pp.
715
742
. 10.1016/S0022-5096(02)00060-1
10.
Uysal
,
A.
, and
Altan
,
E.
,
2014
, “
A New Slip-Line Field Modeling of Orthogonal Machining With a Rounded-Edge Worn Cutting Tool
,”
Mach. Sci. Technol.
,
18
(
3
), pp.
386
423
. 10.1080/10910344.2014.925375
11.
Uysal
,
A.
, and
Altan
,
E.
,
2016
, “
Slip-line Field Modelling of Rounded-Edge Cutting Tool for Orthogonal Machining
,”
Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf.
,
230
(
10
), pp.
1925
1941
. 10.1177/0954405415577560
12.
Uysal
,
A.
, and
Jawahir
,
I. S.
,
2019
, “
A Slip-Line Model for Serrated Chip Formation in Machining of Stainless Steel and Validation
,”
Int. J. Adv. Manuf. Technol.
,
101
(
9–12
), pp.
2449
2464
. 10.1007/s00170-018-3136-x
13.
Oxley
,
P. L. B.
,
1989
,
The Mechanics of Machining: An Analytical Approach to Assessing Machinability
,
E. Horwood
,
Chichester, England
.
14.
Özel
,
T.
, and
Zeren
,
E.
,
2006
, “
A Methodology to Determine Work Material Flow Stress and Tool-Chip Interfacial Friction Properties by Using Analysis of Machining
,”
ASME J. Manuf. Sci. Eng.
,
128
(
1
), pp.
119
129
. 10.1115/1.2118767
15.
Lalwani
,
D. I.
,
Mehta
,
N. K.
, and
Jain
,
P. K.
,
2009
, “
Extension of Oxley’s Predictive Machining Theory for Johnson and Cook Flow Stress Model
,”
J. Mater. Process. Technol.
,
209
(
12–13
), pp.
5305
5312
. 10.1016/j.jmatprotec.2009.03.020
16.
Li
,
B.
,
Wang
,
X.
,
Hu
,
Y.
, and
Li
,
C.
,
2011
, “
Analytical Prediction of Cutting Forces in Orthogonal Cutting Using Unequal Division Shear-Zone Model
,”
Int. J. Adv. Manuf. Technol.
,
54
(
5–8
), pp.
431
443
. 10.1007/s00170-010-2940-8
17.
Ning
,
J.
,
Nguyen
,
V.
, and
Liang
,
S. Y.
,
2019
, “
Analytical Modeling of Machining Forces of Ultra-Fine-Grained Titanium
,”
Int. J. Adv. Manuf. Technol.
,
101
(
4
), pp.
627
636
. 10.1007/s00170-018-2889-6
18.
Raczy
,
A.
,
Elmadagli
,
M.
,
Altenhof
,
W.
, and
Alpas
,
A.
,
2004
, “
An Eulerian Finite-Element Model for Determination of Deformation State of a Copper Subjected to Orthogonal Cutting
,”
Metall. Mater. Trans. A
,
35
(
8
), pp.
2393
2400
. 10.1007/s11661-006-0219-3
19.
Maranho
,
C.
, and
Davim
,
J. P.
,
2010
, “
Finite Element Modelling of Machining of AISI 316 Steel: Numerical Simulation and Experimental Validation
,”
Simul. Modell. Pract. Theory
,
18
(
2
), pp.
139
156
. 10.1016/j.simpat.2009.10.001
20.
Wan
,
L.
, and
Wang
,
D.
,
2015
, “
Numerical Analysis of the Formation of the Dead Metal Zone With Different Tools in Orthogonal Cutting
,”
Simul. Modell. Pract. Theory
,
56
, pp.
1
15
. 10.1016/j.simpat.2015.04.006
21.
Rodríguez
,
J. M.
,
Carbonell
,
J. M.
,
Cante
,
J. C.
, and
Oliver
,
J.
,
2017
, “
Continuous Chip Formation in Metal Cutting Processes Using the Particle Finite Element Method (PFEM)
,”
Int. J. Solids Struct.
,
120
, pp.
81
102
. 10.1016/j.ijsolstr.2017.04.030
22.
Yanda
,
H.
,
Ghani
,
J. A.
, and
Haron
,
C. H. C.
,
2010
, “
Effect of Rake Angle on Stress, Strain and Temperature on the Edge of Carbide Cutting Tool in Orthogonal Cutting Using FEM Simulation
,”
J. Eng. Technol. Sci.
,
42
(
2
), pp.
179
194
. 10.5614/itbj.eng.sci.2010.42.2.6
23.
Bagci
,
E.
,
2011
, “
3-D Numerical Analysis of Orthogonal Cutting Process via Mesh-Free Method
,”
Int. J. Phys. Sci.
,
6
(
6
), pp.
1267
1282
.
24.
Ding
,
H.
, and
Shin
,
Y. C.
,
2013
, “
Multi-Physics Modeling and Simulations of Surface Microstructure Alteration in Hard Turning
,”
J. Mater. Process. Technol.
,
213
(
6
), pp.
877
886
. 10.1016/j.jmatprotec.2012.12.016
25.
Ding
,
H.
, and
Shin
,
Y. C.
,
2011
, “
Dislocation Density-Based Grain Refinement Modeling of Orthogonal Cutting of Titanium
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), pp.
152
161
. 10.1115/msec2011-50220
26.
Luttervelt
,
C. A. V.
, et al
,
1998
, “
Present Situation and Future Trends in Modelling of Machining Operations Progress Report of the CIRP Working Group 'Modelling of Machining Operation'
,”
47
(
2
), pp.
587
626
. 10.1016/s0007-8506(07)63244-2
27.
Zhang
,
D.
,
Zhang
,
X.-M.
, and
Ding
,
H.
,
2018
, “
Hybrid Digital Image Correlation–Finite Element Modeling Approach for Modeling of Orthogonal Cutting Process
,”
ASME J. Manuf. Sci. Eng.
,
140
(
4
), p.
041018
. 10.1115/1.4038998
28.
Harzallah
,
M.
,
Pottier
,
T.
,
Gilblas
,
R.
,
Landon
,
Y.
, and
Senatore
,
J.
,
2019
, “
Thermomechanical Coupling Investigation in Ti-6Al-4V Orthogonal Cutting: Experimental and Numerical Confrontation
,”
Int. J. Mech. Sci.
,
169
, p.
105322
. 10.1016/j.ijmecsci.2019.105322
29.
Chandrasekaran
,
H.
, and
Kapoor
,
D.
,
1965
, “
Photoelastic Analysis of Tool-Chip Interface Stresses
,”
ASME J. Eng. Ind.
,
87
(
4
), pp.
495
502
. 10.1115/1.3670869
30.
Usui
,
E.
, and
Takeyama
,
H.
,
1960
, “
A Photoelastic Analysis of Machining Stresses
,”
ASME J. Eng. Ind.
,
82
(
4
), pp.
303
308
. 10.1115/1.3664233
31.
Ramalingam
,
S.
,
1971
, “
A Photoelastic Study of Stress Distribution During Orthogonal Cutting—Part 2: Photoplasticity Observations
,”
Int. J. Mech. Sci.
,
13
(
4
), pp.
373
387
. 10.1115/1.3427960
32.
Palmer
,
W.
, and
Oxley
,
P.
,
1959
, “
Mechanics of Orthogonal Machining
,”
Proc. Inst. Mech. Eng.
,
173
(
1
), pp.
623
654
. 10.1243/PIME_PROC_1959_173_053_02
33.
Bitans
,
K.
, and
Brown
,
R.
,
1965
, “
An Investigation of the Deformation in Orthogonal Cutting
,”
Int. J. Mach. Tool Des. Res.
,
5
(
3
), pp.
155
165
. 10.1016/0020-7357(65)90023-5
34.
Childs
,
T.
,
1971
, “
A new Visio-Plasticity Technique and a Study of Curly Chip Formation
,”
Int. J. Mech. Sci.
,
13
(
4
), pp.
373
387
. 10.1016/0020-7403(71)90061-0
35.
Zhang
,
D.
,
Zhang
,
X.-M.
,
Xu
,
W.-J.
, and
Ding
,
H.
,
2017
, “
Stress Field Analysis in Orthogonal Cutting Process Using Digital Image Correlation Technique
,”
ASME J. Manuf. Sci. Eng.
,
139
(
3
), p.
031001
. 10.1115/1.4033928
36.
Baizeau
,
T.
,
Campocasso
,
S.
,
Rossi
,
F.
,
Poulachon
,
G.
, and
Hild
,
F.
,
2016
, “
Cutting Force Sensor Based on Digital Image Correlation for Segmented Chip Formation Analysis
,”
J. Mater. Process. Technol.
,
238
, pp.
466
473
. 10.1016/j.jmatprotec.2016.07.016
37.
Peng
,
B.
,
Bergs
,
T.
,
Schraknepper
,
D.
,
Smigielski
,
T.
, and
Klocke
,
F.
,
2020
, “
Development and Validation of a New Friction Model for Cutting Processes
,”
Int. J. Adv. Manuf. Technol.
,
107
(
4
), pp.
1
13
. 10.1007/s00170-019-04709-8
38.
de Souza Neto
,
E. A.
,
Peric
,
D.
, and
Owen
,
D. R. J.
,
2008
,
Computational Methods for Plasticity: Theory and Applications
,
Wiley
,
New York
.
39.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1983
, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
Proceedings of the 7th International Symposium on Ballistics
,
The Netherlands
, Vol.
21
, No.
1
, pp.
541
547
.
40.
Zhang
,
D.
,
Zhang
,
X.-M.
,
Nie
,
G.-C.
,
Yang
,
Z.-Y.
, and
Ding
,
H.
,
2021
, “
Characterization of Material Strain and Thermal Softening Effects in the Cutting Process
,”
Int. J. Mach. Tools Manuf.
,
160
, p.
103672
. 10.1016/j.ijmachtools.2020.103672
41.
Islam
,
C.
, and
Altintas
,
Y.
,
2019
, “
A Two Dimensional Transient Thermal Model for Coated Cutting Tools
,”
ASME J. Manuf. Sci. Eng.
,
101
(
4
), pp.
627
636
.
42.
Grzesik
,
W.
,
Bartoszuk
,
M.
, and
Nieslony
,
P.
,
2004
, “
Finite Difference Analysis of the Thermal Behaviour of Coated Tools in Orthogonal Cutting of Steels
,”
Int. J. Mach. Tools Manuf.
,
44
(
14
), pp.
1451
1462
. 10.1016/j.ijmachtools.2004.05.008
43.
Zorev
,
N.
,
1963
, “
Inter-Relationship Between Shear Processes Occurring Along Tool Face and Shear Plane in Metal Cutting
,”
Int. Res. Prod. Eng.
,
49
, pp.
143
152
.
44.
Roth
,
R.
, and
Oxley
,
P. L. B.
,
1972
, “
Slip-Line Field Analysis for Orthogonal Machining Based Upon Experimental Flow Fields
,”
J. Mech. Eng. Sci.
,
14
(
2
), pp.
85
97
. 10.1243/JMES_JOUR_1972_014_015_02
You do not currently have access to this content.