Abstract

Application of maraging steels via selective laser melting process in the automotive industry was unavoidably involved in the resistance spot welding with conventional steels. Due to the rapid cooling rate of welding process, selective laser melted maraging steels with unique chemical components and stack microstructure could induce the different microstructural evolution, resulting in the complicated fracture behavior in the spot welds. This paper developed a FEA model to predict the fracture mode of spot welds of DP600 to maraging steel under KSII test conditions, and the effect of test conditions and printing orientations was studied. A method was proposed to calculate the material properties of fusion zone by introducing the combined effect of melting DP600 and maraging steels via selective laser melting, resulting in the accurate prediction of fracture mode and strength of spot welds. A diffusion layer with lower strength was found around the fusion zone and the fracture path propagated in the region, resulting in the partial interfacial failure of spot welds. Meanwhile, the printing orientation had no significant effect on the fracture mode and strength of spot welds, but the different material properties of maraging steels could affect the fracture displacement of spot welds. These findings could pave a way to guide the application of maraging steels via selective laser melting process in multiple industries, especially in the automotive industry.

References

1.
Frazier
,
W. E.
,
2014
, “
Metal Additive Manufacturing: A Review
,”
J. Mater. Eng. Perform.
,
23
(
6
), pp.
1917
1928
.
2.
Gu
,
D. D.
,
Meiners
,
W.
,
Wissenbach
,
K.
, and
Poprawe
,
R.
,
2013
, “
Laser Additive Manufacturing of Metallic Components: Materials, Processes and Mechanisms
,”
Int. Mater. Rev.
,
57
(
3
), pp.
133
164
.
3.
Herzog
,
D.
,
Seyda
,
V.
,
Wycisk
,
E.
, and
Emmelmann
,
C.
,
2016
, “
Additive Manufacturing of Metals
,”
Acta Mater.
,
117
, pp.
371
392
.
4.
Cyr
,
E.
,
Asgari
,
H.
,
Shamsdini
,
S.
,
Purdy
,
M.
,
Hosseinkhani
,
K.
, and
Mohammadi
,
M.
,
2018
, “
Fracture Behaviour of Additively Manufactured MS1-H13 Hybrid Hard Steels
,”
Mater Lett.
,
212
, pp.
174
177
.
5.
Khairallah
,
S. A.
,
Anderson
,
A. T.
,
Rubenchik
,
A.
, and
King
,
W. E.
,
2016
, “
Laser Powder-Bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and Formation Mechanisms of Pores, Spatter, and Denudation Zones
,”
Acta Mater.
,
108
, pp.
36
45
.
6.
Suryawanshi
,
J.
,
Prashanth
,
K. G.
, and
Ramamurty
,
U.
,
2017
, “
Mechanical Behavior of Selective Laser Melted 316L Stainless Steel
,”
Mat. Sci. Eng. A
,
696
, pp.
113
121
.
7.
Suryawanshi
,
J.
,
Prashanth
,
K. G.
, and
Ramamurty
,
U.
,
2017
, “
Tensile, Fracture, and Fatigue Crack Growth Properties of a 3D Printed Maraging Steel Through Selective Laser Melting
,”
J. Alloy Compd.
,
725
, pp.
355
364
.
8.
Jägle
,
E. A.
,
Choi
,
P.-P.
,
Van Humbeeck
,
J.
, and
Raabe
,
D.
,
2014
, “
Precipitation and Austenite Reversion Behavior of a Maraging Steel Produced by Selective Laser Melting
,”
J. Mater. Res.
,
29
(
17
), pp.
2072
2079
.
9.
Kürnsteiner
,
P.
,
Wilms
,
M. B.
,
Weisheit
,
A.
,
Barriobero-Vila
,
P.
,
Jägle
,
E. A.
, and
Raabe
,
D.
, “
Massive Nanoprecipitation in an Fe-19Ni- x Al Maraging Steel Triggered by the Intrinsic Heat Treatment During Laser Metal Deposition
,”
Acta Mater.
,
129
, pp.
52
60
.
10.
Tan
,
C.
,
Zhou
,
K.
,
Ma
,
W.
,
Zhang
,
P.
,
Liu
,
M.
, and
Kuang
,
T.
,
2017
, “
Microstructural Evolution, Nanoprecipitation Behavior and Mechanical Properties of Selective Laser Melted High-Performance Grade 300 Maraging Steel
,”
Mater. Des.
,
134
, pp.
23
34
.
11.
Brauser
,
S.
,
Pepke
,
L. A.
,
Weber
,
G.
, and
Rethmeier
,
M.
,
2010
, “
Deformation Behaviour of Spot-Welded High Strength Steels for Automotive Applications
,”
Mat. Sci. Eng. A
,
527
(
26
), pp.
7099
7108
.
12.
Ramazani
,
A.
,
Abbasi
,
M.
,
Kazemiabnavi
,
S.
,
Schmauder
,
S.
,
Larson
,
R.
, and
Prahl
,
U.
,
2016
, “
Development and Application of a Microstructure-Based Approach to Characterize and Model Failure Initiation in DP Steels Using XFEM
,”
Mat. Sci. Eng. A
,
660
, pp.
181
194
.
13.
Xu
,
F.
,
Sun
,
G.
,
Li
,
G.
, and
Li
,
Q.
,
2014
, “
Failure Analysis for Resistance Spot Welding in Lap-Shear Specimens
,”
Int. J. Mech. Sci.
,
78
, pp.
154
166
.
14.
Paveebunvipak
,
K.
, and
Uthaisangsuk
,
V.
,
2018
, “
Microstructure Based Modeling of Deformation and Failure of Spot-Welded Advanced High Strength Steels Sheets
,”
Mater. Des.
,
160
, pp.
731
751
.
15.
Ren
,
D. X.
,
Zhao
,
D. W.
,
Liu
,
L. M.
, and
Zhao
,
K. M.
,
2019
, “
Clinch-Resistance Spot Welding of Galvanized Mild Steel to 5083 Al Alloy
,”
Int. J. Adv. Manuf. Tech.
,
101
(
1–4
), pp.
511
521
.
16.
Zhao
,
D. W.
,
Ren
,
D. X.
,
Song
,
G.
,
Zhao
,
K. M.
, and
Zhang
,
Z. D.
,
2021
, “
Nugget Formation Analysis of Al/Steel Clinch-Resistance Hybrid Spot Welding
,”
Sci. Technol. Weld. Joining
,
26
(
6
), pp.
439
447
.
17.
Ren
,
S. D.
,
Ma
,
Y. W.
, and
Ma
,
N. S.
,
2021
, “
3-D Modelling of the Coaxial One-Side Resistance Spot Welding of AL5052/CFRP Dissimilar Material
,”
J. Manuf. Process.
,
68
, pp.
940
950
.
18.
Javaheri
,
E.
,
Lubritz
,
J.
,
Graf
,
B.
, and
Rethmeier
,
M.
, “
Mechanical Properties Characterization of Welded Automotive Steels
,”
Metals
,
10
(
1
), p.
1
.
19.
Zhang
,
F.
,
Xu
,
H. L.
, and
Fang
,
X. F.
,
2020
, “
Failure Behavior and Crash Modelling of Resistance Rivet Spot Welding (RRSW) for Joining Al and Steel in Vehicle Structure
,”
Int. J. Crashworthiness
, pp.
1
18
.
20.
Patil
,
S.
, and
Lankarani
,
H.
,
2018
, “
Numerical Prediction of Various Failure Modes in Spot Weld Steel Material
,”
SAE Int. J. Transp. Saf.
,
6
(
1
), pp.
29
38
.
21.
Sun
,
X.
,
Choi
,
K. S.
,
Liu
,
W. N.
, and
Khaleel
,
M. A.
,
2009
, “
Predicting Failure Modes and Ductility of Dual Phase Steels Using Plastic Strain Localization
,”
Int. J. Plast.
,
25
(
10
), pp.
1888
1909
.
22.
Panda
,
S. K.
,
Sreenivasan
,
N.
,
Kuntz
,
M. L.
, and
Zhou
,
Y.
,
2008
, “
Numerical Simulations and Experimental Results of Tensile Test Behavior of Laser Butt Welded DP980 Steels
,”
J. Eng. Mater. Technol.
,
130
(
4
), p.
041003
.
23.
Eller
,
T. K.
,
Greve
,
L.
,
Andres
,
M.
,
Medricky
,
M.
,
Geijselaers
,
H. J. M.
,
Meinders
,
V. T.
, and
van den Boogaard
,
A. H.
,
2016
, “
Plasticity and Fracture Modeling of the Heat-Affected Zone in Resistance Spot Welded Tailor Hardened Boron Steel
,”
J. Mater. Process. Technol.
,
234
, pp.
309
322
.
24.
Eller
,
T. K.
,
Greve
,
L.
,
Andres
,
M. T.
,
Medricky
,
M.
,
Hatscher
,
A.
,
Meinders
,
V. T.
, and
van den Boogaard
,
A.H.
,
2014
, “
Plasticity and Fracture Modeling of Quench-Hardenable Boron Steel With Tailored Properties
,”
J. Mater. Process. Technol.
,
214
(
6
), pp.
1211
1227
.
25.
Luo
,
C.
, and
Zhang
,
Y.
,
2019
, “
Constitutive Relationship of Fusion Zone in the Spot Welds of Advance High Strength Steels
,”
J. Manuf. Process.
,
45
, pp.
624
633
.
You do not currently have access to this content.