Abstract

Eighteen percent Ni maraging steels are high performance Fe–Ni martensite-based alloys with ultra-high strength and good toughness. They find applications in strategic sectors, joining of thick sections often coming into picture. Welding of thick section involves a longer processing time, more passes, and a higher heat-input. Double-pulsed gas metal arc welding (DP-GMAW) is an emerging welding technique, well suited for joining thick sections. DP-GMAW is capable of controlling the solidification parameters, weld pool geometry, and cooling rate at a reduced heat-input. The major concern regarding the welding of maraging steel is the formation of the reverted austenite (RA) phase in the fusion zone (FZ). The formation of RA deteriorates the mechanical performance of welded joints. The presence of RA can be supressed by the usage of suitable welding techniques and proper post-weld heat treatments (PWHTs). DP-GMAW process was employed to carry out the welding; studies on the joints produced are reported in this research paper. The studies also included the effect of various PWHTs on the metallurgical and mechanical properties of the maraging steel weldments. The research used three distinct PWHTs: direct aging (DA), solutionizing + aging (SA), and homogenizing + solutionizing + aging (HSA). The FZ microstructures under DA and SA conditions show that there is RA at the cell boundaries. However, there was no evidence of RA in FZ following HSA. The energy dispersive spectra (EDS) analysis of the as-welded FZ showed segregation along the grain boundaries (GBs). This led to the premature formation of RA upon subsequent aging. The SA treatments proved inadequate to totally eliminate RA in the microstructure. On the other hand, the HSA treatments were effective in evening out concentration differences and preventing formation of RA. This study demonstrates that DP-GMAW combined with HSA treatment has the best mechanical properties.

References

1.
Rohit
,
B.
, and
Muktinutalapati
,
N. R.
,
2021
, “
Fatigue Behavior of 18% Ni Maraging Steels: A Review
,”
J. Mater. Eng. Perform.
,
30
(
4
), pp.
2341
2354
.
2.
Vasudevan
,
V. K.
,
Kim
,
S. J.
, and
Wayman
,
C. M.
,
1990
, “
Precipitation Reactions and Strengthening Behavior in 18 Wt Pct Nickel Maraging Steels
,”
Metall. Trans. A
,
21
(
10
), pp.
2655
2668
.
3.
Decker
,
R. F.
,
Novak
,
C. J.
, and
Landig
,
T. W.
,
1967
, “
Developments and Projected Trends in Maraging Steels
,”
JOM
,
19
(
11
), pp.
60
66
.
4.
Gupta
,
R. N.
,
Raja
,
V. S.
,
Mukherjee
,
M. K.
, and
Murty
,
S. V. S. N.
,
2017
, “
On Improving the Quality of Gas Tungsten Arc Welded 18Ni 250 Maraging Steel Rocket Motor Casings
,”
Metall. Mater. Trans. A
,
48
(
10
), pp.
4655
4666
.
5.
Gope
,
D. K.
,
Kumar
,
P.
,
Chattopadhyaya
,
S.
,
Wuriti
,
G.
, and
Thomas
,
T.
,
2021
, “
An Investigation Into Microstructure and Mechanical Properties of Maraging Steel Weldment
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
1104
(
1
), pp.
012014
.
6.
Gupta
,
R.
,
Reddy
,
R.
, and
Mukherjee
,
M. K.
,
2012
, “
Key-Hole Plasma Arc Welding of 8 mm Thick Maraging Steel—A Comparison With Multi-Pass GTAW
,”
Weld. World
,
56
(
9–10
), pp.
69
75
.
7.
Subashini
,
L.
,
Prabhakar
,
K. V. P.
,
Gundakaram
,
R. C.
, and
Ghosh
,
S.
,
2016
, “
Single Pass Laser-Arc Hybrid Welding of Maraging Steel Thick Sections Single Pass Laser-Arc Hybrid Welding of Maraging Steel Thick Sections
,”
Mater. Manuf. Process.
,
31
(
16
), pp.
2186
2198
.
8.
Subashini
,
L.
,
Prabhakar
,
K. V. P.
,
Ghosh
,
S.
, and
Padmanabham
,
G.
,
2020
, “
Comparison of Laser-MIG Hybrid and Autogenous Laser Welding of M250 Maraging Steel Thick Sections—Understanding the Role of Filler Wire Addition
,”
Int. J. Adv. Manuf. Technol.
,
107
(
3–4
), pp.
1581
1594
.
9.
Blauel
,
J. G.
,
Smith
,
H. R.
, and
Schulze
,
G.
,
1974
, “
Fracture Toughness Study of a Grade 300 Maraging Steel Weld Joint
,”
Weld. Res. Suppl.
,
53
(
5
), pp.
211
218
.
10.
Lang
,
F. H.
, and
Kenyon
,
N.
,
1971
,
Welding of Maraging Steels
,
Welding Research Council
,
New York
.
11.
Wang
,
L. L.
,
Wei
,
H. L.
,
Xue
,
J. X.
, and
DebRoy
,
T.
,
2018
, “
Special Features of Double Pulsed Gas Metal Arc Welding
,”
J. Mater. Process. Technol.
,
251
, pp.
369
375
.
12.
Yamamoto
,
H.
,
Harada
,
S.
,
Ueyama
,
T.
, and
Ogawa
,
S.
,
1992
, “
Development of Low-Frequency Pulsed MIG Welding for Aluminium Alloys
,”
Weld. Int.
,
6
(
7
), pp.
580
583
.
13.
Liu
,
A.
,
Tang
,
X.
, and
Lu
,
F.
,
2013
, “
Study on Welding Process and Prosperities of AA5754 Al-Alloy Welded by Double Pulsed Gas Metal Arc Welding
,”
Mater. Des.
,
50
, pp.
149
155
.
14.
Sathishkumar
,
M.
,
Bhakat
,
Y. J.
,
Kumar
,
K. G.
,
Giribaskar
,
S.
,
Oyyaravelu
,
R.
,
Arivazhagan
,
N.
, and
Manikandan
,
M.
,
2021
, “
Investigation of Double-Pulsed Gas Metal Arc Welding Technique to Preclude Carbide Precipitates in Aerospace Grade Hastelloy X
,”
J. Mater. Eng. Perform.
,
30
(
1
), pp.
661
684
.
15.
Wang
,
L. L.
,
Wei
,
H. L.
,
Xue
,
J. X.
, and
DebRoy
,
T.
,
2017
, “
A Pathway to Microstructural Refinement Through Double Pulsed Gas Metal Arc Welding
,”
Scr. Mater.
,
134
, pp.
61
65
.
16.
Wang
,
L.
, and
Xue
,
J.
,
2017
, “
Perspective on Double Pulsed Gas Metal Arc Welding
,”
Appl. Sci.
,
7
(
9
), p.
894
.
17.
Yang
,
K.
,
Wang
,
F.
,
Liu
,
H.
,
Wang
,
P.
,
Luo
,
C.
,
Yu
,
Z.
,
Yang
,
L.
, and
Li
,
H.
,
2021
, “
Double-Pulse Triple-Wire Mig Welding of 6082-t6 Aluminum Alloy: Process Characteristics and Joint Performances
,”
Metals
,
11
(
9
), pp.
1
13
.
18.
Sen
,
M.
,
Mukherjee
,
M.
,
Singh
,
S. K.
, and
Pal
,
T. K.
,
2018
, “
Effect of Double-Pulsed Gas Metal Arc Welding (DP-GMAW) Process Variables on Microstructural Constituents and Hardness of Low Carbon Steel Weld Deposits
,”
J. Manuf. Process.
,
31
, pp.
424
439
.
19.
Rohit
,
B.
, and
Muktinutalapati
,
N. R.
,
2018
, “
Austenite Reversion in 18% Ni Maraging Steel and Its Weldments
,”
Mater. Sci. Technol.
,
34
(
3
), pp.
253
260
.
20.
Jose
,
B.
,
Manoharan
,
M.
, and
Natarajan
,
A.
,
2021
, “
Technology Development for Thick Section of Aerospace-Grade MDN 250 Weldment With Higher Weld Strength and Toughness by Suppressing Reverted Austenite Phase
,”
J. Mater. Eng. Perform.
,
31
(
3
), pp.
1828
1845
.
21.
Venkateswara Rao
,
V.
,
Madhusudhan Reddy
,
G.
, and
Sitarama Raju
,
A. V.
,
2010
, “
Influence of Post-Weld Heat Treatments on Microstructure and Mechanical Properties of Gas Tungsten Arc Maraging Steel Weldments
,”
Mater. Sci. Technol.
,
26
(
12
), pp.
1459
1468
.
22.
Madhusudhan Reddy
,
G.
, and
Srinivasa Rao
,
K.
,
2015
, “
Microstructure and Corrosion Behaviour of Gas Tungsten Arc Welds of Maraging Steel
,”
Def. Technol.
,
11
(
1
), pp.
48
55
.
23.
Shamantha
,
C. R.
,
Narayanan
,
R.
,
Iyer
,
K. J. L.
,
Radhakrishnan
,
V. M.
,
Seshadri
,
S. K.
,
Sundararajan
,
S.
, and
Sundaresan
,
S.
,
2000
, “
Microstructural Changes During Welding and Subsequent Heat Treatment of 18Ni (250-Grade) Maraging Steel
,”
Mater. Sci. Eng. A
,
287
(
1
), pp.
43
51
.
24.
Tariq
,
F.
,
Baloch
,
R. A.
,
Ahmed
,
B.
, and
Naz
,
N.
,
2010
, “
Investigation Into Microstructures of Maraging Steel 250 Weldments and Effect of Post-Weld Heat Treatments
,”
J. Mater. Eng. Perform.
,
19
(
2
), pp.
264
273
.
25.
Fanton
,
L.
,
Abdalla
,
A. J.
, and
Fernandes
,
S.
,
2014
, “
Heat Treatment and Yb—Fiber Laser Welding of a Maraging Steel
,”
Weld. Res.
,
93
(
9
), pp.
362
368
.
26.
Li
,
K.
,
Shan
,
J.
,
Wang
,
C.
, and
Tian
,
Z.
,
2016
, “
Effect of Post-Weld Heat Treatments on Strength and Toughness Behavior of T-250 Maraging Steel Welded by Laser Beam
,”
Mater. Sci. Eng. A
,
663
, pp.
157
165
.
27.
Reddy
,
G. M.
,
Rao
,
V. V.
, and
Raju
,
A. V. S.
,
2009
, “
The Effect of Post-Weld Heat Treatments on the Microstructure and Mechanical Properties of Maraging Steel Laser Weldments
,”
Proc. Inst. Mech. Eng. Part L: J. Mater. Des. Appl.
,
223
(
4
), pp.
149
159
.
28.
Sen
,
M.
,
2015
, “
Evaluation of Correlations Between DP-GMAW Process Parameters and Bead Geometry
,”
Weld. J.
,
94
(
8
), pp.
265
279
.
29.
Lippold
,
J. C.
,
2015
,
Welding Metallurgy and Weldability
,
Wiley
,
New York
.
30.
Jose
,
B.
,
Manoharan
,
M.
, and
Natarajan
,
A.
,
2021
, “
Technology Development for In-Situ Measurement of Residual Stress in Arc Welded Joints of MDN 250 by Portable Cosα X-Ray Diffraction Method
,”
Proc. Inst. Mech. Eng. Part E
,
236
(
4
), pp.
1308
1318
.
31.
Hu
,
Z.
,
Mo
,
D.
,
Wang
,
C.
,
He
,
G.-Q.
, and
Chen
,
C.-S.
,
2008
, “
Different Behavior in Electron Beam Welding of 18 Ni Co-Free Maraging Steels
,”
J. Mater. Eng. Perform.
,
17
(
5
), pp.
767
771
.
32.
Sathishkumar
,
M.
,
Manikandan
,
M.
, and
Arivazhagan
,
N.
,
2021
, “
Prospects of Pulsed Current Arc Welding on Aerospace Grade Hastelloy X
,”
Proc. Inst. Mech. Eng. Part E
,
235
(
4
), pp.
1059
1072
.
You do not currently have access to this content.