Abstract

Additive and subtractive (Add/Sub) manufacturing processes are increasingly being combined to produce complex parts with unique geometries and properties. However, the design of such combined processes is often challenging as it requires a deep understanding of the interaction between the different processes. On the other hand, digital twin (DT) technology has become a powerful tool in recent years for optimizing manufacturing processes. This article explores the use of the digital twin technology for a holistic process planning of combined additive and subtractive processes. The article describes the integration of laser metal deposition (LMD) and micro-milling prediction models of resulting geometry (width and height), hardness, and surface roughness into the digital twin. This is then used for combined process planning to achieve different target values regarding resulting geometry and surface roughness. For the planning of this combined process chain, further criteria such as tool life, energy, and process time are considered in the optimization, showing the potential for sustainable and efficient production. Sensorless cutting force estimation is also used to detect small cutting forces, with the potential to use this as a soft sensor for roughness estimation. The measured width, height, and roughness as a result of the process parameters suggested by the optimization algorithms showed a mean absolute percentage error (MAPE) of 4, 17, and 16%, respectively.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Culmone
,
C.
,
Smit
,
G.
, and
Breedveld
,
P.
,
2019
, “
Additive Manufacturing of Medical Instruments: A State-of-the-Art Review
,”
Addit. Manuf.
,
27
, pp.
461
473
.
2.
Blakey-Milner
,
B.
,
Gradl
,
P.
,
Snedden
,
G.
,
Brooks
,
M.
,
Pitot
,
J.
,
Lopez
,
E.
,
Leary
,
M.
,
Berto
,
F.
, and
Du Plessis
,
A.
,
2021
, “
Metal Additive Manufacturing in Aerospace: A Review
,”
Mater. Des.
,
209
, p.
110008
.
3.
Zolfaghari
,
A.
,
Chen
,
T.
, and
Yi
,
A. Y.
,
2019
, “
Additive Manufacturing of Precision Optics at Micro and Nanoscale
,”
Int. J. Extreme Manuf.
,
1
(
1
), p.
12005
.
4.
Lalegani Dezaki
,
M.
,
Serjouei
,
A.
,
Zolfagharian
,
A.
,
Fotouhi
,
M.
,
Moradi
,
M.
,
Ariffin
,
M.
, and
Bodaghi
,
M.
,
2022
, “
A Review on Additive/Subtractive Hybrid Manufacturing of Directed Energy Deposition (DED) Process
,”
Adv. Powder Mater.
,
1
(
4
), p.
100054
.
5.
Rossi
,
A.
, and
Lanzetta
,
M.
,
2020
, “
Integration of Hybrid Additive/Subtractive Manufacturing Planning and Scheduling by Metaheuristics
,”
Comput. Ind. Eng.
,
144
, p.
106428
.
6.
Bayer
,
R. G.
, and
Sirico
,
J. L.
,
1975
, “
The Influence of Surface Roughness on Wear
,”
Wear
,
35
(
2
), pp.
251
260
.
7.
Berglund
,
J.
,
Brown
,
C. A.
,
Rosén
,
B.-G.
, and
Bay
,
N.
,
2010
, “
Milled Die Steel Surface Roughness Correlation With Steel Sheet Friction
,”
CIRP Ann.
,
59
(
1
), pp.
577
580
.
8.
Ardi
,
D. T.
,
Li
,
Y. G.
,
Chan
,
K.
,
Blunt
,
L.
, and
Bache
,
M. R.
,
2014
, “
The Effects of Machined Topography on Fatigue Life of a Nickel Based Superalloy
,”
Procedia CIRP
,
13
, pp.
19
24
.
9.
Feng
,
C.-X.
, and
Wang
,
X.-F.
,
2003
, “
Surface Roughness Predictive Modeling: Neural Networks Versus Regression
,”
IIE Trans.
,
35
(
1
), pp.
11
27
.
10.
Ghosh
,
G.
,
Mandal
,
P.
, and
Mondal
,
S. C.
,
2019
, “
Modeling and Optimization of Surface Roughness in Keyway Milling Using ANN. Genetic Algorithm and Particle Swarm Optimization
,”
Int. J. Adv. Manuf. Technol.
,
100
(
5–8
), pp.
1223
1242
.
11.
Prakasvudhisarn
,
C.
,
Kunnapapdeelert
,
S.
, and
Yenradee
,
P.
,
2009
, “
Optimal Cutting Condition Determination for Desired Surface Roughness in End Milling
,”
Int. J. Adv. Manuf. Technol.
,
41
(
5–6
), pp.
440
451
.
12.
Routara
,
B. C.
,
Bandyopadhyay
,
A.
, and
Sahoo
,
P.
,
2009
, “
Roughness Modeling and Optimization in CNC End Milling Using Response Surface Method: Effect of Workpiece Material Variation
,”
Int. J. Adv. Manuf. Technol.
,
40
(
11–12
), pp.
1166
1180
.
13.
Benardos
,
P. G.
, and
Vosniakos
,
G.-C.
,
2003
, “
Predicting Surface Roughness in Machining: A Review
,”
Int. J. Mach. Tools Manuf.
,
43
(
8
), pp.
833
844
.
14.
Brinksmeier
,
E.
,
Klocke
,
F.
,
Lucca
,
D. A.
,
Sölter
,
J.
, and
Meyer
,
D.
,
2014
, “
Process Signatures – A New Approach to Solve the Inverse Surface Integrity Problem in Machining Processes
,”
Procedia CIRP
,
13
, pp.
429
434
.
15.
Cus
,
F.
, and
Balic
,
J.
,
2003
, “
Optimization of Cutting Process by GA Approach
,”
Rob. Comput. Integr. Manuf.
,
19
(
1–2
), pp.
113
121
.
16.
Öktem
,
H.
,
2009
, “
An Integrated Study of Surface Roughness for Modelling and Optimization of Cutting Parameters During End Milling Operation
,”
Int. J. Adv. Manuf. Technol.
,
43
(
9–10
), pp.
852
861
.
17.
Ozcelik
,
B.
,
Oktem
,
H.
, and
Kurtaran
,
H.
,
2005
, “
Optimum Surface Roughness in End Milling Inconel 718 by Coupling Neural Network Model and Genetic Algorithm
,”
Int. J. Adv. Manuf. Technol.
,
27
(
3–4
), pp.
234
241
.
18.
Suresh
,
P.
,
Venkateswara Rao
,
P.
, and
Deshmukh
,
S. G.
,
2002
, “
A Genetic Algorithmic Approach for Optimization of Surface Roughness Prediction Model
,”
Int. J. Mach. Tools Manuf.
,
42
(
6
), pp.
675
680
.
19.
Arrazola
,
P. J.
,
Özel
,
T.
,
Umbrello
,
D.
,
Davies
,
M.
, and
Jawahir
,
I. S.
,
2013
, “
Recent Advances in Modelling of Metal Machining Processes
,”
CIRP Ann.
,
62
(
2
), pp.
695
718
.
20.
Altintas
,
Y.
,
Kersting
,
P.
,
Biermann
,
D.
,
Budak
,
E.
,
Denkena
,
B.
, and
Lazoglu
,
I.
,
2014
, “
Virtual Process Systems for Part Machining Operations
,”
CIRP Ann.
,
63
(
2
), pp.
585
605
.
21.
Feldhausen
,
T.
,
Heinrich
,
L.
,
Saleeby
,
K.
,
Burl
,
A.
,
Post
,
B.
,
MacDonald
,
E.
,
Saldana
,
C.
, and
Love
,
L.
,
2022
, “
Review of Computer-Aided Manufacturing (CAM) Strategies for Hybrid Directed Energy Deposition
,”
Addit. Manuf.
,
56
, p.
102900
.
22.
Bergs
,
T.
,
Gierlings
,
S.
,
Auerbach
,
T.
,
Klink
,
A.
,
Schraknepper
,
D.
, and
Augspurger
,
T.
,
2021
, “
The Concept of Digital Twin and Digital Shadow in Manufacturing
,”
Procedia CIRP
,
101
, pp.
81
84
.
23.
Stark
,
R.
, and
Damerau
,
T.
,
2019
, “Digital Twin,”
CIRP Encyclopedia of Production Engineering
,
S.
Chatti
, and
T.
Tolio
, eds.,
Springer Berlin Heidelberg
,
Berlin. Heidelberg
, pp.
1
8
.
24.
Haag
,
S.
, and
Anderl
,
R.
,
2019
, “
Automated Generation of As-Manufactured Geometric Representations for Digital Twins Using STEP
,”
Procedia CIRP
,
84
, pp.
1082
1087
.
25.
Wagner
,
R.
,
Schleich
,
B.
,
Haefner
,
B.
,
Kuhnle
,
A.
,
Wartzack
,
S.
, and
Lanza
,
G.
,
2019
, “
Challenges and Potentials of Digital Twins and Industry 4.0 in Product Design and Production for High Performance Products
,”
Procedia CIRP
,
84
, pp.
88
93
.
26.
Schleich
,
B.
,
Dittrich
,
M.-A.
,
Clausmeyer
,
T.
,
Damgrave
,
R.
,
Erkoyuncu
,
J. A.
,
Haefner
,
B.
,
Lange
,
J.
,
de Plakhotnik
,
D.
,
Scheidel
,
W.
, and
Wuest
,
T.
,
2019
, “
Shifting Value Stream Patterns Along the Product Lifecycle With Digital Twins
,”
Procedia CIRP
,
86
, pp.
3
11
.
27.
Isshiki
,
K.
,
Sato
,
T.
,
Imabeppu
,
Y.
,
Irino
,
N.
, and
Kakinuma
,
Y.
,
2021
, “
Enhancement of Accuracy in Sensorless Cutting-Force Estimation by Mutual Compensation of Multi-Integrated Cutting-Force Observers
,”
Proceedings of the Machining Innovations Conference for Aerospace Industry (MIC)
,
Hanover, Germany
,
Dec. 1–2
.
28.
Ohishi
,
K.
,
Ohnishi
,
K.
, and
Miyachi
,
K.
,
1983
,
Torque – Speed Regulation of DC Motor Based on Load Torque Estimation Method 2
,
Institute of Electrical Engineers of Japan
,
Tokyo
.
29.
Takei
,
M.
,
Kurihara
,
D.
,
Katsura
,
S.
, and
Kakinuma
,
Y.
,
2011
, “
Hybrid Control for Machine Tool Table Applying Sensorless Cutting Force Monitoring
,”
Int. J. Autom. Technol.
,
5
(
4
), pp.
587
593
.
30.
Böß
,
V.
,
Denkena
,
B.
,
Breidenstein
,
B.
,
Dittrich
,
M.-A.
, and
Nguyen
,
H. N.
,
2019
, “
Improving Technological Machining Simulation by Tailored Workpiece Models and Kinematics
,”
Procedia CIRP
,
82
, pp.
224
230
.
31.
Böß
,
V.
,
Denkena
,
B.
,
Dittrich
,
M.-A.
,
Malek
,
T.
, and
Friebe
,
S.
,
2021
, “
Dexel-Based Simulation of Directed Energy Deposition Additive Manufacturing
,”
J. Manuf. Mater. Process.
,
5
(
1
), p.
9
.
32.
van Hook
,
T.
,
1986
, “
Real-Time Shaded NC Milling Display
,”
ACM SIGGRAPH Computer Graphics
,
20
(
4
), pp.
15
20
.
33.
Denkena
,
B.
,
Dittrich
,
M.-A.
,
Nguyen
,
H. N.
, and
Bild
,
K.
,
2021
, “
Self-Optimizing Process Planning of Multi-Step Polishing Processes
,”
Prod. Eng.
,
15
(
3–4
), pp.
563
571
.
34.
Yamada
,
Y.
,
Yamato
,
S.
, and
Kakinuma
,
Y.
,
2017
, “
Mode Decoupled and Sensorless Cutting Force Monitoring Based on Multi-Encoder
,”
Int. J. Adv. Manuf. Technol.
,
92
(
9–12
), pp.
4081
4093
.
35.
Hartung
,
J.
,
Elpelt
,
B.
, and
Klösener
,
K.-H.
,
2005
,
Statistik: Lehr- und Handbuch der Angewandten Statistik; mit Zahlreichen. Vollständig Durchgerechneten Beispielen. 14. Unwesentlich Veränd. Aufl. München
,
Oldenbourg
,
Wien
.
36.
Kakinuma
,
Y.
,
Sudo
,
Y.
, and
Aoyama
,
T.
,
2011
, “
Detection of Chatter Vibration in End Milling Applying Disturbance Observer
,”
CIRP Ann.
,
60
(
1
), pp.
109
112
.
37.
Yamada
,
Y.
, and
Kakinuma
,
Y.
,
2016
, “
Sensorless Cutting Force Estimation for Full-Closed Controlled Ball-Screw-Driven Stage
,”
Int. J. Adv. Manuf. Technol.
,
87
(
9–12
), pp.
3337
3348
.
38.
Yamato
,
S.
,
Sugiyama
,
A.
,
Suzuki
,
N.
,
Irino
,
N.
,
Imabeppu
,
Y.
, and
Kakinuma
,
Y.
,
2019
, “
Enhancement of Cutting Force Observer by Identification of Position and Force-Amplitude Dependent Model Parameters
,”
Int. J. Adv. Manuf. Technol.
,
104
(
9–12
), pp.
3589
3605
.
You do not currently have access to this content.