Abstract

Roll-to-roll (R2R) manufacturing is a highly efficient industrial method for continuously processing flexible webs through a series of rollers. With advancements in technology, R2R manufacturing has emerged as one of the most economical production methods for advanced products, such as flexible electronics, renewable energy devices, and 2D materials. However, the development of cost-effective and efficient manufacturing processes for these products presents new challenges, including higher precision requirements, the need for improved in-line quality control, and the integration of material processing dynamics into the traditional web handling system. This paper reviews the state of the art in advanced R2R manufacturing, focusing on modeling and control, and highlights research areas that need further development.

References

1.
Young
,
G. E.
, and
Reid
,
K. N.
,
1993
, “
Lateral and Longitudinal Dynamic Behavior and Control of Moving Webs
,”
ASME J. Dyn. Syst. Meas. Control
,
115
(
2B
), pp.
309
317
.
2.
Corzo
,
D.
,
Tostado-Blázquez
,
G.
, and
Baran
,
D.
,
2020
, “
Flexible Electronics: Status, Challenges and Opportunities
,”
Front. Electron.
,
1
, p.
594003
.
3.
Huang
,
Y.
,
Liu
,
H.
,
Xu
,
Z.
,
Chen
,
J.
, and
Yin
,
Z.
,
2018
, “
Conformal Peeling of Device-On-Substrate System in Flexible Electronic Assembly
,”
IEEE Trans. Comp. Packag. Manuf. Technol.
,
8
(
8
), pp.
1496
1506
.
4.
Lee
,
C. H.
,
Kim
,
J. H.
,
Zou
,
C.
,
Cho
,
I. S.
,
Weisse
,
J. M.
,
Nemeth
,
W.
,
Wang
,
Q.
,
Van Duin
,
A. C. T.
,
Kim
,
T. S.
, and
Zheng
,
X.
,
2013
, “
Peel-and-Stick: Mechanism Study for Efficient Fabrication of Flexible/Transparent Thin-Film Electronics
,”
Sci. Rep.
,
3
, p.
2917
.
5.
Zhou
,
H.
,
Qin
,
W.
,
Yu
,
Q.
,
Cheng
,
H.
,
Yu
,
X.
, and
Wu
,
H.
,
2019
, “
Transfer Printing and Its Applications in Flexible Electronic Devices
,”
Nanomaterials
,
9
(
2
), p.
283
.
6.
Khan
,
S.
,
Lorenzelli
,
L.
, and
Dahiya
,
R. S.
,
2015
, “
Technologies for Printing Sensors and Electronics Over Large Flexible Substrates: A Review
,”
IEEE Sens. J.
,
15
(
6
), pp.
3164
3185
.
7.
Yeo
,
Z.
,
Ng
,
R.
, and
Song
,
B.
, “A Cost and Resource Consumption Model for Improving Resource Efficiency of Configurable Roll-to-Roll Processing,” Procedia CIRP, Elsevier B.V., pp.
845
850
.
8.
Cheng
,
H.
,
Wu
,
J.
,
Li
,
M.
,
Kim
,
D.-H.
,
Kim
,
Y.-S.
,
Huang
,
Y.
,
Kang
,
Z.
,
Hwang
,
K. C.
, and
Rogers
,
J. A.
,
2011
, “
An Analytical Model of Strain Isolation for Stretchable and Flexible Electronics
,”
Appl. Phys. Lett.
,
98
(
6
), p.
061902
.
9.
Colton Katsarelis
,
B.
, and
Kennedy
,
M. S.
,
2017
, “
Damage and Deformation of Flexible Electronic Systems Report of Research Progression Associated With the Austrian Marshall Plan Foundation Scholarship
”.
10.
Dahiya
,
A. S.
,
Shakthivel
,
D.
,
Kumaresan
,
Y.
,
Zumeit
,
A.
,
Christou
,
A.
, and
Dahiya
,
R.
,
2020
, “
High-Performance Printed Electronics Based on Inorganic Semiconducting Nano to Chip Scale Structures
,”
Nano Converg.
,
7
, p.
33
.
11.
Shakthivel
,
D.
,
Liu
,
F.
,
Nunez
,
C. G.
,
Taube
,
W.
, and
Dahiya
,
R.
,
2017
, “
Nanomaterials Processing for Flexible Electronics
,”
Proceedings of IEEE International Symposium on Industrial Electronics
,
Edinburgh, UK
,
June 19–21
, IEEE, pp.
2102
2106
.
12.
Chen
,
H.
,
Lu
,
B. W.
,
Lin
,
Y.
, and
Feng
,
X.
,
2014
, “
Interfacial Failure in Flexible Electronic Devices
,”
IEEE Electron Device Lett.
,
35
(
1
), pp.
132
134
.
13.
Righini
,
G. C.
,
Krzak
,
J.
,
Lukowiak
,
A.
,
Macrelli
,
G.
,
Varas
,
S.
, and
Ferrari
,
M.
,
2021
, “
From Flexible Electronics to Flexible Photonics: A Brief Overview
,”
Opt. Mater.
,
115
, p.
111011
.
14.
Kim
,
Y. Y.
,
Yang
,
T. Y.
,
Suhonen
,
R.
,
Kemppainen
,
A.
,
Hwang
,
K.
,
Jeon
,
N. J.
, and
Seo
,
J.
,
2020
, “
Roll-to-Roll Gravure-Printed Flexible Perovskite Solar Cells Using Eco-Friendly Anti-Solvent Bathing With Wide Processing Window
,”
Nat. Commun.
,
11
(
1
), p.
5146
.
15.
Galagan
,
Y.
,
2018
,
Roll-to-Roll Manufacturing: Process Elements and Recent Advances, Chapter 11: Flexible Solar Cells
.
16.
Angmo
,
D.
,
DeLuca
,
G.
,
Scully
,
A. D.
,
Chesman
,
A. S. R.
,
Seeber
,
A.
,
Zuo
,
C.
,
Vak
,
D.
,
Bach
,
U.
, and
Gao
,
M.
,
2021
, “
A Lab-to-Fab Study Toward Roll-to-Roll Fabrication of Reproducible Perovskite Solar Cells Under Ambient Room Conditions
,”
Cell Rep. Phys. Sci.
,
2
(
1
), p.
100293
.
17.
Gu
,
X.
,
Zhou
,
Y.
,
Gu
,
K.
,
Kurosawa
,
T.
,
Guo
,
Y.
,
Li
,
Y.
,
Lin
,
H.
, et al
,
2017
, “
Roll-to-Roll Printed Large-Area All-Polymer Solar Cells With 5% Efficiency Based on a Low Crystallinity Conjugated Polymer Blend
,”
Adv. Energy Mater.
,
7
(
14
), p.
1602742
.
18.
Parvazian
,
E.
, and
Watson
,
T.
,
2024
, “
The Roll-to-Roll Revolution to Tackle the Industrial Leap for Perovskite Solar Cells
,”
Nat. Commun.
,
15
, p.
3983
.
19.
Burkitt
,
D.
,
Patidar
,
R.
,
Greenwood
,
P.
,
Hooper
,
K.
,
McGettrick
,
J.
,
Dimitrov
,
S.
,
Colombo
,
M.
, et al
,
2020
, “
Roll-to-Roll Slot-Die Coated P-I-N Perovskite Solar Cells Using Acetonitrile Based Single Step Perovskite Solvent System
,”
Sustain. Energy Fuels
,
4
(
7
), pp.
3340
3351
.
20.
Yang
,
M. H.
,
Ko
,
S. J.
,
An
,
N. G.
,
Whang
,
D. R.
,
Lee
,
S. H.
,
Ahn
,
H.
,
Kim
,
J. Y.
,
Vak
,
D.
,
Yoon
,
S. C.
, and
Chang
,
D. W.
,
2020
, “
Roll-to-Roll Compatible Quinoxaline-Based Polymers Toward High Performance Polymer Solar Cells
,”
J. Mater. Chem. A
,
8
(
47
), pp.
25208
25216
.
21.
Gusain
,
A.
,
Thankappan
,
A.
, and
Thomas
,
S.
,
2020
, “
Roll-to-Roll Printing of Polymer and Perovskite Solar Cells: Compatible Materials and Processes
,”
J. Mater. Sci.
,
55
(
28
), pp.
13490
13542
, Springer.
22.
Sahare
,
S.
,
Pham
,
H. D.
,
Angmo
,
D.
,
Ghoderao
,
P.
,
Macleod
,
J.
,
Khan
,
S. B.
,
Lee
,
S.-L.
,
Singh
,
S. P.
, and
Sonar
,
P.
,
2021
, “
Emerging Perovskite Solar Cell Technology: Remedial Actions for the Foremost Challenges
,”
Adv. Energy Mater.
,
11
(
42
), p.
2101085
.
23.
Rubio Arias
,
J. J.
,
Kim
,
J.
,
Pedroso Silva Santos
,
B.
,
Schmidt Albuquerque
,
L.
,
Custodio Mota
,
I.
, and
Vieira Marques
,
M. F.
,
2021
, “
Solution Processing of Polymer Solar Cells: Towards Continuous Vacuum-Free Production
,”
J. Mater. Sci.: Mater. Electron.
,
32
(
9
), pp.
11367
11392
.
24.
Li
,
C.
,
2021
, “
Roll-to-Roll Compatible Methods and Outlook for Perovskite Solar Cells
,”
Proceedings of E3S Web of Conferences
,
Online
,
Mar. 10
.
25.
Rafique
,
S.
,
Abdullah
,
S. M.
,
Sulaiman
,
K.
, and
Iwamoto
,
M.
,
2018
, “
Fundamentals of Bulk Heterojunction Organic Solar Cells: An Overview of Stability/Degradation Issues and Strategies for Improvement
,”
Renew. Sustain. Energy Rev.
,
84
, pp.
43
53
.
26.
Rupnowski
,
P.
,
Ulsh
,
M.
,
Sopori
,
B.
,
Green
,
B. G.
,
Wood
,
D. L.
,
Li
,
J.
, and
Sheng
,
Y.
,
2018
, “
In-Line Monitoring of Li-Ion Battery Electrode Porosity and Areal Loading Using Active Thermal Scanning—Modeling and Initial Experiment
,”
J. Power Sources
,
375
, pp.
138
148
.
27.
Feng
,
Z.
,
Barai
,
P.
,
Gim
,
J.
,
Yuan
,
K.
,
Wu
,
Y. A.
,
Xie
,
Y.
,
Liu
,
Y.
, and
Srinivasan
,
V.
,
2018
, “
In Situ Monitoring of the Growth of Nickel, Manganese, and Cobalt Hydroxide Precursors During Co-Precipitation Synthesis of Li-Ion Cathode Materials
,”
J. Electrochem. Soc.
,
165
(
13
), pp.
3077
3083
.
28.
Barai
,
P.
,
Feng
,
Z.
,
Kondo
,
H.
, and
Srinivasan
,
V.
,
2019
, “
Multiscale Computational Model for Particle Size Evolution During Coprecipitation of Li-Ion Battery Cathode Precursors
,”
J. Phys. Chem. B
,
123
(
15
), pp.
3291
3303
.
29.
Wood
,
D. L.
,
Wood
,
M.
,
Li
,
J.
,
Du
,
Z.
,
Ruther
,
R. E.
,
Hays
,
K. A.
,
Muralidharan
,
N.
,
Geng
,
L.
,
Mao
,
C.
, and
Belharouak
,
I.
,
2020
, “
Perspectives on the Relationship Between Materials Chemistry and Roll-to-Roll Electrode Manufacturing for High-Energy Lithium-Ion Batteries
,”
Energy Storage Mater.
,
29
, pp.
254
265
.
30.
Chao
,
C. H.
,
Hsieh
,
C. T.
,
Ke
,
W. J.
,
Lee
,
L. W.
,
Lin
,
Y. F.
,
Liu
,
H. W.
,
Gu
,
S.
, et al
,
2021
, “
Roll-to-Roll Atomic Layer Deposition of Titania Coating on Polymeric Separators for Lithium Ion Batteries
,”
J. Power Sources
,
482
, p.
228896
.
31.
Syrový
,
T.
,
Kazda
,
T.
,
Akrman
,
J.
, and
Syrová
,
L.
,
2021
, “
Towards Roll-to-Roll Printed Batteries Based on Organic Electrodes for Printed Electronics Applications
,”
J. Energy Storage
,
40
, p.
102680
.
32.
Buga
,
M.
,
Spinu-Zaulet
,
A.
, and
Chitu
,
A.
,
2021
,
Advances in Carbon Management Technologies, Chapter 19: Lithium-Ion Battery: Future Technology Development Driven by Environmental Impact
.
33.
Ding
,
W.-H.
,
Xie
,
X.-P.
,
Zhang
,
P. A. N. F.
, and
Han
,
L.
,
2019
, “
A Novel Tension Control System of Square Lithium Battery Laminated Machine
,”
Recent Adv. Electr. Electron. Eng.
,
13
(
1
), pp.
69
79
.
34.
Li
,
J.
,
Fleetwood
,
J.
,
Hawley
,
W. B.
, and
Kays
,
W.
,
2022
, “
From Materials to Cell: State-of-the-Art and Prospective Technologies for Lithium-Ion Battery Electrode Processing
,”
Chem. Rev.
,
122
(
1
), pp.
903
956
.
35.
Sun
,
D.-M.
,
Liu
,
C.
,
Ren
,
W.-C.
, and
Cheng
,
H.-M.
,
2013
, “
A Review of Carbon Nanotube- and Graphene-Based Flexible Thin-Film Transistors
,”
Small
,
9
(
8
), pp.
1188
1205
.
36.
Liu
,
Z.
,
Li
,
J.
, and
Yan
,
F.
,
2013
, “
Package-Free Flexible Organic Solar Cells With Graphene Top Electrodes
,”
Adv. Mater.
,
25
(
31
), pp.
4296
4301
.
37.
Singh Raman
,
R. K.
,
Chakraborty Banerjee
,
P.
,
Lobo
,
D. E.
,
Gullapalli
,
H.
,
Sumandasa
,
M.
,
Kumar
,
A.
,
Choudhary
,
L.
,
Tkacz
,
R.
,
Ajayan
,
P. M.
, and
Majumder
,
M.
,
2012
, “
Protecting Copper From Electrochemical Degradation by Graphene Coating
,”
Carbon
,
50
(
11
), pp.
4040
4045
.
38.
Surwade
,
S. P.
,
Smirnov
,
S. N.
,
Vlassiouk
,
I. V.
,
Unocic
,
R. R.
,
Veith
,
G. M.
,
Dai
,
S.
, and
Mahurin
,
S. M.
,
2015
, “
Water Desalination Using Nanoporous Single-Layer Graphene
,”
Nat. Nanotechnol.
,
10
(
5
), pp.
459
464
.
39.
Muñoz
,
R.
, and
Gómez-Aleixandre
,
C.
,
2013
, “
Review of CVD Synthesis of Graphene
,”
Chem. Vap. Depos.
,
19
(
10–12
), pp.
297
322
.
40.
Deokar
,
G.
,
Avila
,
J.
,
Razado-Colambo
,
I.
,
Codron
,
J. L.
,
Boyaval
,
C.
,
Galopin
,
E.
,
Asensio
,
M. C.
, and
Vignaud
,
D.
,
2015
, “
Towards High Quality CVD Graphene Growth and Transfer
,”
Carbon
,
89
, pp.
82
92
.
41.
Wang
,
Y.
,
Zheng
,
Y.
,
Xu
,
X.
,
Dubuisson
,
E.
,
Bao
,
Q.
,
Lu
,
J.
, and
Loh
,
K. P.
,
2011
, “
Electrochemical Delamination of CVD-Grown Graphene Film: Toward the Recyclable Use of Copper Catalyst
,”
ACS Nano
,
5
(
12
), pp.
9927
9933
.
42.
Gupta
,
P.
,
Dongare
,
P. D.
,
Grover
,
S.
,
Dubey
,
S.
,
Mamgain
,
H.
,
Bhattacharya
,
A.
, and
Deshmukh
,
M. M.
,
2014
, “
A Facile Process for Soak-and-Peel Delamination of CVD Graphene From Substrates Using Water
,”
Sci. Rep.
,
4
, p.
3882
.
43.
Na
,
S. R.
,
Suk
,
J. W.
,
Tao
,
L.
,
Akinwande
,
D.
,
Ruoff
,
R. S.
,
Huang
,
R.
, and
Liechti
,
K. M.
,
2015
, “
Selective Mechanical Transfer of Graphene From Seed Copper Foil Using Rate Effects
,”
ACS Nano
,
9
(
2
), pp.
1325
1335
.
44.
Juang
,
Z. Y.
,
Wu
,
C. Y.
,
Lu
,
A. Y.
,
Su
,
C. Y.
,
Leou
,
K. C.
,
Chen
,
F. R.
, and
Tsai
,
C. H.
,
2010
, “
Graphene Synthesis by Chemical Vapor Deposition and Transfer by a Roll-to-Roll Process
,”
Carbon
,
48
(
11
), pp.
3169
3174
.
45.
Na
,
S. R.
,
Wang
,
X.
,
Piner
,
R. D.
,
Huang
,
R.
,
Willson
,
C. G.
, and
Liechti
,
K. M.
,
2016
, “
Cracking of Polycrystalline Graphene on Copper Under Tension
,”
ACS Nano
,
10
(
10
), pp.
9616
9625
.
46.
Xin
,
H.
,
Zhao
,
Q.
,
Chen
,
D.
, and
Li
,
W.
,
2018
, “
Roll-to-Roll Mechanical Peeling for Dry Transfer of Chemical Vapor Deposition Graphene
,”
ASME J. Micro Nano-Manuf.
,
6
(
3
), p.
031004
.
47.
Qin
,
Z.
,
Xu
,
Z.
, and
Buehler
,
M. J.
,
2015
, “
Peeling Silicene From Model Silver Substrates in Molecular Dynamics Simulations
,”
ASME J. Appl. Mech.
,
82
(
10
), p.
101003
.
48.
Park
,
J.
,
Karjuki
,
N.
,
Myers
,
D. J.
,
Mauger
,
S. A.
,
Neyerlin
,
K. C.
, and
Ulsh
,
M.
,
2018
, “
In Situ X-Ray Scattering Characterization of PEMFC Catalyst Ink Microstructure during Ink Processing
” Electrochemical Society Meeting Abstracts 233. No. 30, The Electrochemical Society, Inc.
49.
Mauger
,
S. A.
,
Firat Cetinbas
,
C.
,
Park
,
J.
,
Neyerlin
,
K. C.
,
Ahluwalia
,
R. K.
,
Myers
,
D. J.
,
Khandavalli
,
S.
, et al
,
2018
, “
Control of Ionomer Distribution and Porosity in Roll-to-Roll Coated Fuel Cell Catalyst Layers
”.
50.
Mauger
,
S. A.
,
Wang
,
M.
,
Cetinbas
,
F. C.
,
Dzara
,
M. J.
,
Park
,
J.
,
Myers
,
D. J.
,
Ahluwalia
,
R. K.
, et al
,
2021
, “
Development of High-Performance Roll-to-Roll-Coated Gas-Diffusion-Electrode-Based Fuel Cells
,”
J. Power Sources
,
506
, p.
230039
.
51.
Park
,
J.
,
Kang
,
Z.
,
Bender
,
G.
,
Ulsh
,
M.
, and
Mauger
,
S. A.
,
2020
, “
Roll-to-Roll Production of Catalyst Coated Membranes for Low-Temperature Electrolyzers
,”
J. Power Sources
,
479
, p.
228819
.
52.
Yuan
,
X.-Z.
,
Nayoze-Coynel
,
C.
,
Shaigan
,
N.
,
Fisher
,
D.
,
Zhao
,
N.
,
Zamel
,
N.
,
Gazdicki
,
P.
, et al
,
2021
, “
A Review of Functions, Attributes, Properties and Measurements for the Quality Control of Proton Exchange Membrane Fuel Cell Components
,”
J. Power Sources
,
491
, p.
229540
.
53.
Jinnouchi
,
R.
,
Kudo
,
K.
,
Kodama
,
K.
,
Kitano
,
N.
,
Suzuki
,
T.
,
Minami
,
S.
,
Shinozaki
,
K.
,
Hasegawa
,
N.
, and
Shinohara
,
A.
,
2021
, “
The Role of Oxygen-Permeable Ionomer for Polymer Electrolyte Fuel Cells
,”
Nat. Commun.
,
12
(
1
), p.
4956
.
54.
Daud
,
W. R. W.
,
Rosli
,
R. E.
,
Majlan
,
E. H.
,
Hamid
,
S. A. A.
,
Mohamed
,
R.
, and
Husaini
,
T.
,
2017
, “
PEM Fuel Cell System Control: A Review
,”
Renew. Energy
,
113
, pp.
620
638
.
55.
Motealleh
,
B.
,
Liu
,
Z.
,
Masel
,
R. I.
,
Sculley
,
J. P.
,
Richard Ni
,
Z.
, and
Meroueh
,
L.
,
2021
, “
Next-Generation Anion Exchange Membrane Water Electrolyzers Operating for Commercially Relevant Lifetimes
,”
Int. J. Hydrogen Energy
,
46
(
5
), pp.
3379
3386
.
56.
Holton
,
O. T.
, and
Stevenson
,
J. W.
,
2013
, “
The Role of Platinum in Proton Exchange Membrane Fuel Cells
,”
Platinum Met. Rev.
,
57
(
4
), pp.
259
271
.
57.
Wang
,
Y.
,
Ruiz Diaz
,
D. F.
,
Chen
,
K. S.
,
Wang
,
Z.
, and
Adroher
,
X. C.
,
2020
, “
Materials, Technological Status, and Fundamentals of PEM Fuel Cells—A Review
,”
Mater. Today
,
32
, pp.
178
203
.
58.
Litster
,
S.
, and
McLean
,
G.
,
2004
, “
PEM Fuel Cell Electrodes
,”
J. Power Sources
,
130
(
1–2
), pp.
61
76
.
59.
Barbir
,
F.
, and
Yazici
,
S.
,
2008
, “
Status and Development of PEM Fuel Cell Technology
,”
Int. J. Energy Res.
,
32
(
5
), pp.
369
378
.
60.
Shelton
,
J. J.
,
1986
, “
Dynamics of Web Tension Control With Velocity or Torque Control
,”
Proceedings of the American Control Conference
,
Seattle, WA
,
June 18–20
, IEEE, pp.
1423
1427
.
61.
Sievers
,
L.
,
Balas
,
M. J.
, and
Von Flotow
,
A.
,
1988
, “
Modeling of Web Conveyance Systems for Multivariable Control
,”
IEEE Trans. Autom. Control
,
33
(
6
), pp.
524
531
.
62.
Cobos Torres
,
E. O.
, and
Pagilla
,
P. R.
,
2018
, “
Modeling and Control of Web Lateral Dynamics in Roll-to-Roll Manufacturing: New Governing Equations and Control Strategies
,”
American Control Conference
,
Milwaukee, WI
,
June 27–29
.
63.
Martz
,
Y.
, and
Knittel
,
D.
,
2015
, “
Robust Control in Industrial Roll-to-Roll Systems: New Approaches Using Finite Element Modeling of the Web
,”
IEEE International Conference on Industrial Technology (ICIT)
,
Seville, Spain
,
Mar. 17–19
.
64.
Vedrines
,
M.
, and
Knittel
,
D.
, “
An Improved Friction Sliding Model for Web Handling Systems. Application to the Controller Parametrization
,”
IFAC Proceedings Volumes (IFAC-PapersOnline), IFAC Secretariat
, pp.
217
222
.
65.
Shin
,
K.-H.
, and
Kwon
,
S.-O.
,
2007
, “
The Effect of Tension on the Lateral Dynamics and Control of a Moving Web
,”
IEEE Trans. Ind. Appl.
,
43
(
2
), pp.
403
403
.
66.
Chen
,
Z.
,
Zheng
,
Y.
,
Zhang
,
T.
,
Wong
,
D. S. H.
, and
Deng
,
Z.
,
2019
, “
Modeling and Register Control of the Speed-Up Phase in Roll-to-Roll Printing Systems
,”
IEEE Trans. Autom. Sci. Eng.
,
16
(
3
), pp.
1438
1449
.
67.
Guan
,
X.
,
High
,
M. S.
, and
Tree
,
D. A.
,
1995
, “
Viscoelastic Effects in Modeling Web Handling Systems: Steady-State Analysis
,”
ASME J. Appl. Mech.
,
62
(
4
), pp.
908
914
.
68.
Dalbe
,
M. J.
,
Villey
,
R.
,
Ciccotti
,
M.
,
Santucci
,
S.
,
Cortet
,
P. P.
, and
Vanel
,
L.
,
2016
, “
Inertial and Stick-Slip Regimes of Unstable Adhesive Tape Peeling
,”
Soft Matter
,
12
(
20
), pp.
4537
4548
.
69.
Cortet
,
P.-P.
,
Ciccotti
,
M.
, and
Vanel
,
L.
,
2007
, “
Imaging the Stick-Slip Peeling of an Adhesive Tape Under a Constant Load
,”
J. Stat. Mech.
, p.
P03005
.
70.
Shin
,
K.-H.
,
Jang
,
J.-I.
,
Kang
,
H.-K.
, and
Song
,
S.-H.
,
2003
, “
Compensation Method for Tension Disturbance Due to an Unknown Roll Shape in a Web Transport System
,”
IEEE Trans. Ind. Appl.
,
39
(
5
), pp.
1422
1428
.
71.
Branca
,
C.
,
Pagilla
,
P. R.
, and
Reid
,
K. N.
,
2013
, “
Governing Equations for Web Tension and Web Velocity in the Presence of Nonideal Rollers
,”
ASME J. Dyn. Syst. Meas. Control
,
135
(
1
), p.
011018
.
72.
Kang
,
C. G.
, and
Lee
,
B. J.
, “
MIMO Tension Modelling and Control for Roll-to-Roll Converting Machines
,”
Proceedings of IFAC Proceedings Volumes (IFAC-PapersOnline)
,
Seoul, South Korea
,
July 6–11
.
73.
Hong
,
N.
,
Kireev
,
D.
,
Zhao
,
Q.
,
Chen
,
D.
,
Akinwande
,
D.
, and
Li
,
W.
,
2022
, “
Roll-to-Roll Dry Transfer of Large-Scale Graphene
,”
Adv. Mater.
,
34
(
3
), p.
2106615
.
74.
Martin
,
C.
,
Zhao
,
Q.
,
Bakshi
,
S.
,
Chen
,
D.
, and
Li
,
W.
,
2021
, “
PLDI-Based Convexification for Roll-to-Roll Dry Transfer Control
,”
Modelling, Estimation and Control Conference
,
Austin, TX
,
Oct. 24–27
.
75.
Kang
,
S.
,
Yoon
,
T.
,
Ma
,
B. S.
,
Cho
,
M. S.
, and
Kim
,
T. S.
,
2021
, “
Liquid-Assisted Adhesion Control of Graphene–Copper Interface for Damage-Free Mechanical Transfer
,”
Appl. Surf. Sci.
,
551
, p.
149229
.
76.
Hong
,
N.
,
Kireev
,
D.
,
Zhao
,
Q.
,
Chen
,
D.
,
Akinwande
,
D.
, and
Li
,
W.
,
2021
, “
The Line Speed Effect in Roll-to-Roll Dry Transfer of Chemical Vapor Deposition Graphene
,”
International Conference on Micro- and Nano-Devices Enabled by R2R Manufacturing
,
Austin, TX
,
Dec. 15–17
.
77.
Zhao
,
Q.
,
Martin
,
C.
,
Hong
,
N.
,
Chen
,
D.
, and
Li
,
W.
,
2023
, “
A Real-Time Supervisory Control Strategy for Roll-to-Roll Dry Transfer of 2D Materials and Printed Electronics
,”
IEEE/ASME Trans. Mechatron.
,
28
(
5
), pp.
2832
2839
.
78.
Hong
,
N.
,
Zhao
,
Q.
,
Chen
,
D.
,
Liechti
,
K. M.
, and
Li
,
W.
,
2022
, “
A Method to Estimate Adhesion Energy of As-Grown Graphene in a Roll-to-Roll Dry Transfer Process
,”
Carbon
,
201
, pp.
712
718
.
79.
Zhao
,
Q.
,
Hong
,
N.
,
Chen
,
D.
, and
Li
,
W.
,
2022
, “
A Dynamic System Model for Roll-to-Roll Dry Transfer of Two-Dimensional Materials and Printed Electronics
,”
ASME J. Dyn. Syst Meas. Control
,
144
(
7
), p.
071004
.
80.
Lu
,
Y.
, and
Pagilla
,
P. R.
,
2015
, “
A Nonlinear Tension Control Scheme for Web Transport Through Heating Processes
,”
Dynamic Systems and Control Conference
,
Columbus, OH
,
Oct. 28–30
.
81.
Lu
,
Y.
, and
Pagilla
,
P.
,
2014
, “
Adaptive Control of Web Tension in a Heat Transfer Section of a Roll-to-Roll Manufacturing Process Line
,”
American Control Conference
,
Portland, OR
,
June 4–6
.
82.
Jeon
,
H.
,
Noh
,
J.
,
Kim
,
M.
,
Jo
,
M.
,
Nam
,
S.-H.
,
Jo
,
J.
, and
Lee
,
C.
,
2023
, “
Control Methodology for Tensioned Web Considering Thermal Behavior in Roll-to-Roll Manufacturing Systems
,”
Eng. Sci. Technol. Int. J.
,
46
, p.
101508
.
83.
Lee
,
C. W.
, and
Shin
,
K. H.
,
2005
, “
Strip Tension Control Considering the Temperature Change in Multi-span Systems
”.
84.
Nevaranta
,
N.
,
Niemelä
,
M.
,
Lindh
,
T.
,
Pyrhönen
,
O.
, and
Pyrhönen
,
J.
,
2013
, “
Position Controller Tuning of an Intermittent Web Transport System Using Off-Line Identification
,”
European Conference on Power Electronics and Applications
,
Lille, France
,
Sept. 2–6
.
85.
Chen
,
Z.
,
Zhang
,
T.
, and
Zhang
,
Z.
,
2020
, “
An ESN Based Modeling for Roll-to-Roll Printing Systems
,”
Proceedings of 2020 IEEE 9th Data Driven Control and Learning Systems Conference, DDCLS 2020
,
Liuzhou, China
,
Dec. 7
, IEEE, pp.
53
58
.
86.
Lee
,
J.
,
Shin
,
K.
, and
Jung
,
H.
,
2022
, “
Control Scheme for Rapidly Responding Register Controller Using Response Acceleration Input in Industrial Roll-To-Roll Manufacturing Systems
,”
IEEE Trans. Ind. Electron.
,
69
(
5
), pp.
5215
5224
.
87.
Seshadri
,
A.
,
Raul
,
P. R.
, and
Pagilla
,
P. R.
,
2012
, “
Interaction in Decentralized Control Systems: Application to Roll-to-Roll Systems
,”
Dynamic Systems and Control Conference
,
Fort Lauderdale, FL
,
Oct. 17–19
.
88.
Frechard
,
J.
, and
Knittel
,
D.
,
2012
, “
Advanced Optimization of Industrial Large-Scale Roll-to-Roll Systems Under Parametric Uncertainties
,”
Biennial Conference on Engineering Systems Design and Analysis
,
Nantes, France
,
July 2–4
.
89.
Shin
,
K. H.
,
Kwon
,
S. O.
,
Kim
,
S. H.
, and
Song
,
S. H.
,
2004
, “
Feedforward Control of the Lateral Position of a Moving Web Using System Identification
,”
IEEE Trans. Ind. Appl.
,
40
(
6
), pp.
1637
1643
.
90.
Choi
,
Y.-M.
,
Kang
,
D.
,
Lim
,
S.
,
Lee
,
M. G.
, and
Lee
,
S.-H.
,
2017
, “
High-Precision Printing Force Control System for Roll-to-Roll Manufacturing
,”
IEEE/ASME Trans. Mechatron.
,
22
(
5
), pp.
2351
2358
.
91.
Yan
,
J.
, and
Du
,
X.
,
2022
, “
Neural-Network-Based Adaptive Model Predictive Control for a Flexure-Based Roll-to-Roll Contact Printing System
,”
IEEE/ASME Trans. Mechatron.
,
27
(
6
), pp.
5084
5094
.
92.
Shui
,
H.
,
Jin
,
X.
, and
Ni
,
J.
,
2016
, “
Roll-to-Roll Manufacturing System Modeling and Analysis by Stream of Variation Theory
,”
Proceedings of ASME 2016 11th International Manufacturing Science and Engineering Conference, MSEC 2016
,
Blacksburg, VA
,
June 27– July 1
.
93.
Jin
,
X.
,
Shui
,
H.
, and
Shpitalni
,
M.
,
2019
, “
Virtual Sensing and Virtual Metrology for Spatial Error Monitoring of Roll-to-Roll Manufacturing Systems
,”
CIRP Ann. Manuf. Technol.
,
68
(
1
), pp.
491
494
.
94.
Zhou
,
W.
, and
Gao
,
Z.
,
2007
, “
An Active Disturbance Rejection Approach to Tension and Velocity Regulations in Web Processing Lines
,”
IEEE International Conference on Control Applications
,
Singapore
,
Oct. 1–3
.
95.
Choi
,
K. H.
,
Thanh
,
T. T.
,
Yang
,
B. S.
, and
Kim
,
D. S.
,
2009
, “
A Control System Design of Automatically Tuning Controller for Roll to Roll Web System Using the Modified Genetic Algorithm
,”
Asian Control Conference
,
Hong Kong, China
,
Aug. 27–29
.
96.
Yulin
,
X. U.
,
2009
, “
Modeling and LPV Control of Web Winding System With Sinusoidal Tension Disturbance
,”
Chinese Control and Decision Conference
,
Guilin, China
,
June 17–19
.
97.
Abjadi
,
N.
,
Soltani
,
J.
, and
Askari
,
J.
,
2008
, “
Nonlinear Sliding-Mode Control of a Multi-Motor Web-Winding System Without Tension Sensor
,”
IET Control Theory Appl.
,
3
(
4
), pp.
419
427
.
98.
Martin
,
C.
,
Zhao
,
Q.
,
Bakshi
,
S.
,
Chen
,
D.
, and
Li
,
W.
, “
H∞ Optimal Control for Maintaining the R2R Peeling Front
,”
Proceedings of Modeling Estimation and Control Conference
,
Jersey City, NJ
,
Oct. 2–5
, Elsevier B.V., pp.
663
668
.
99.
Nguyen
,
Q. C.
,
Hong
,
K.-S.
, and
Ngo
,
Q. H.
,
2010
, “
Transverse Vibration Control of Axially Moving Web Systems by Regulation of Axial Tension
,”
International Conference on Control, Automation and Systems
,
Gyeonggi-do, South Korea
,
Oct. 27–30
.
100.
Choi
,
K. H.
,
Tran
,
T. T.
, and
Kim
,
D. S.
,
2011
, “
Back-Stepping Controller Based Web Tension Control for Roll-to-Roll Web Printed Electronics System
,”
J. Adv. Mech. Des. Syst. Manuf.
,
5
(
1
), pp.
7
21
.
101.
Zhao
,
Q.
,
Martin
,
C.
,
Chen
,
D.
, and
Li
,
W.
,
2022
, “
Model Based Repetitive Control for Peeling Front Geometry Control in a Roll-to-Roll Peeling Process
,”
Proceedings of the 2022 International Symposium on Flexible Automation
,
Yokohama, Japan
,
July 3–7
.
102.
Xu
,
Y.
,
De Mathelin
,
M.
, and
Knittel
,
D.
,
2002
, “
Adaptive Rejection of Quasi-Periodic Tension Disturbances in the Unwinding of a Non-Circular Roll
,”
American Control Conference
,
Anchorage, AK
,
May 8–10
.
103.
Wang
,
Z.
, and
Jin
,
X.
,
2023
, “
Spatial-Terminal Iterative Learning Control for Registration Error Elimination in High-Precision Roll-to-Roll Printing Systems
,”
International Manufacturing Science and Engineering Conference
,
New Brunswick, NJ
,
June 12–16
.
104.
Raul
,
P. R.
,
Manyam
,
S. G.
,
Pagilla
,
P. R.
, and
Darbha
,
S.
,
2015
, “
Web Tension Regulation With Partially Known Periodic Disturbances in Roll-to-Roll Manufacturing Systems
,”
European Control Conference
,
Linz, Austria
,
July 15–17
.
105.
Raul
,
P. R.
,
Manyam
,
S. G.
,
Pagilla
,
P. R.
, and
Darbha
,
S.
,
2015
, “
Output Regulation of Nonlinear Systems With Application to Roll-to-Roll Manufacturing Systems
,”
IEEE/ASME Trans. Mech.
,
20
(
3
), pp.
1089
1098
.
106.
Knittel
,
D.
,
Gigan
,
D.
, and
Laroche
,
E.
,
2002
, “
Robust Decentralized Overlapping Control of Large Scale Winding Systems
,”
American Control Conference
,
Anchorage, AK
,
May 8–10
.
107.
Benlatreche
,
A.
,
Knittel
,
D.
, and
Ostertag
,
E.
,
2006
, “
Robust Decentralised Control Strategies for Large-Scale Web Handling Systems
,”
Control Eng. Pract.
,
16
(
6
), pp.
736
750
.
108.
Benlatreche
,
A.
,
Ostertag
,
E.
, and
Knittel
,
D.
,
2006
, “
H∞-Feedback Decentralized Control by BMI Optimization for Large Scale Web Handling Systems
,”
American Control Conference
,
Minneapolis, MN
,
June 14–16
.
109.
Giannoccaro
,
N. I.
, and
Sakamoto
,
T.
,
2007
, “
Importance of Overlapping Decomposition for a Web Tension Control System
,”
Adv. Prod. Eng. Manage.
,
2
, pp.
135
145
.
110.
Nishida
,
T.
,
Sakamoto
,
T.
, and
Giannoccaro
,
N. I.
,
2011
, “
A Self-Tuning PI Decentralized Control of Web Transport System
,”
Annual Conference of the IEEE Industrial Electronics Society
,
Melbourne, VIC, Australia
,
Nov. 7–10
.
111.
Seshadri
,
A.
,
Raul
,
P. R.
, and
Pagilla
,
P. R.
,
2014
, “
Analysis and Minimization of Interaction in Decentralized Control Systems With Application to Roll-to-Roll Manufacturing
,”
IEEE Trans. Control Syst. Technol.
,
22
(
2
), pp.
520
530
.
112.
Kang
,
H.
,
Lee
,
C.
, and
Shin
,
K.
,
2010
, “
A Novel Cross Directional Register Modeling and Feedforward Control in Multi-layer Roll-to-Roll Printing
,”
J. Process Control
,
20
(
5
), pp.
643
652
.
113.
Knittel
,
D.
,
Arbogast
,
A.
,
Vedrines
,
M.
, and
Pagilla
,
P.
,
2006
, “
Decentralized Robust Control Strategies With Model Based Feedforward for Elastic Web Winding Systems
,”
American Control Conference
,
Minneapolis, MN
,
June 14–16
.
114.
Liang
,
Z.
,
Wang
,
L.
,
Xue
,
B.
,
Ji
,
R.
,
Du
,
D.
, and
Chang
,
B.
,
2021
, “
Sag Feedback Based Multi-roll Coordinating Optimal Control of a Low-Tension Roll-to-Roll System
,”
J. Manuf. Syst.
,
61
, pp.
351
364
.
115.
Jeong
,
J.
,
Gafurov
,
A. N.
,
Park
,
P.
,
Kim
,
I.
,
Kim
,
H.-C.
,
Kang
,
D.
,
Oh
,
D.
, and
Lee
,
T.-M.
,
2021
, “
Tension Modeling and Precise Tension Control of Roll-to-Roll System for Flexible Electronics
,”
Flexible Printed Electron.
,
6
(
1
), p.
015005
.
116.
Noura
,
H.
,
Sauter
,
D.
,
Hamelin
,
F.
, and
Theilliol
,
D.
,
2000
, “
Fault-Tolerant Control in Dynamic Systems Application to a Winding Machine
,”
IEEE Control Syst. Mag.
,
20
(
1
), pp.
33
49
.
117.
Rodrigues
,
M.
,
Sahnoun
,
M.
,
Theilliol
,
D.
, and
Ponsart
,
J.-C.
,
2013
, “
Sensor Fault Detection and Isolation for Polytopic LPV Systems: A Winding Machine Application
,”
J. Process Control
,
23
(
6
), pp.
805
816
.
118.
Chen
,
Z.
,
Qu
,
B.
,
Jiang
,
B.
,
Forrest
,
S. R.
, and
Ni
,
J.
,
2023
, “
Robust Constrained Tension Control for High-Precision Roll-to-Roll Processes
,”
ISA Trans.
,
136
, pp.
651
662
.
119.
Shah
,
K.
,
He
,
A.
,
Wang
,
Z.
,
Du
,
X.
, and
Jin
,
X.
,
2022
, “
Data-Driven Model Predictive Control for Roll-to-Roll Process Register Error
,”
ASME 2022 International Additive Manufacturing Conference
,
Lisbon, Portugal
,
Oct. 19–20
.
120.
Laroche
,
E.
, and
Knittel
,
D.
,
2005
, “
An Improved Linear Fractional Model for Robustness Analysis of a Winding System
,”
Control Eng. Pract.
,
13
(
5
), pp.
659
666
.
121.
Hou
,
Y.
,
Gao
,
Z.
,
Jiang
,
F.
, and
Boulter
,
B. T.
,
2002
, “
Active Disturbance Rejection Control for Web Tension Regulation
,”
Conference on Decision and Control
,
Orlando, FL
,
Aug. 6
, pp.
4974
4979
.
122.
Ponniah
,
G.
,
Zubair
,
M.
,
Doh
,
Y. H.
, and
Choi
,
K. H.
,
2014
, “
Fuzzy Decoupling to Reduce Propagation of Tension Disturbances in Roll-to-Roll System
,”
Int. J. Adv. Manuf. Technol.
,
71
(
1–4
), pp.
153
163
.
123.
Zhang
,
T.
,
Tan
,
H.
,
Chen
,
Z.
, and
Rong
,
Y.
,
2024
, “
An Adaptively Direct Decoupling Register Control Structure for the Accelerating Phase of Roll-to-Roll Manufacturing
,”
IEEE Trans. Autom. Sci. Eng.
124.
He
,
J.
,
He
,
Y.
,
Guo
,
S.
, and
Fang
,
M.
,
2009
, “
Tension Robust Control Strategy Based on Self-Optimizing Algorithm
,”
WSEAS Trans. Syst. Control
,
4
(
3
), pp.
151
161
.
125.
Li
,
C.
,
Xu
,
H.
, and
Chen
,
S.-C.
,
2020
, “
Design of a Precision Multi-layer Roll-to-Roll Printing System
,”
Precis. Eng.
,
66
, pp.
564
576
.
You do not currently have access to this content.