Abstract

Thermal insulation materials reduce heat transfer and are typically made from materials like fiberglass, foam, or mineral wool, which are engineered to trap air and hinder heat conduction and convection. The traditional manufacturing processes of thermal insulation materials are often energy-intensive and result in significant greenhouse gas emissions. In the current global drive for sustainability, these energy-intensive manufacturing processes raise environmental concerns and need to be addressed. In this work, with the objective of addressing both material sustainability and manufacturing sustainability, we present an additive manufacturing strategy to fabricate biomass materials for thermal insulation applications. We propose utilizing wheat straw as a biomass feedstock for manufacturing sustainable thermal insulation. This approach captures carbon during growth and stores it within the insulation structure. In the presented work, we first demonstrate the formulation of a 3D-printable ink using chopped straw fibers. We conduct comprehensive rheological characterizations to reveal the shear-thinning properties and the printability of the straw fiber ink. Utilizing the direct ink writing (DIW) process, the straw fiber material is deposited into 3D structures. Through material characterization tests, which include microstructure, mechanical, and thermal analyses, we demonstrate the low thermal conductivity and robust mechanical properties. This paper marks the first work of 3D printing of wheat straw fibers for thermal insulation structures. The discoveries in this pilot work demonstrate the potential to leverage additive manufacturing technologies and sustainable biomass materials to create both functional and value-added wheat straw parts tailored for thermal insulation applications.

References

1.
Al-Homoud
,
M. S.
,
2005
, “
Performance Characteristics and Practical Applications of Common Building Thermal Insulation Materials
,”
Build. Environ.
,
40
(
3
), pp.
353
366
.
2.
Abu-Jdayil
,
B.
,
Mourad
,
A.-H.
,
Hittini
,
W.
,
Hassan
,
M.
, and
Hameedi
,
S.
,
2019
, “
Traditional, State-of-the-Art and Renewable Thermal Building Insulation Materials: An Overview
,”
Constr. Build. Mater.
,
214
, pp.
709
735
.
3.
Zhang
,
Y.
,
Zhou
,
G.
,
Lin
,
K.
,
Zhang
,
Q.
, and
Di
,
H.
,
2007
, “
Application of Latent Heat Thermal Energy Storage in Buildings: State-of-the-Art and Outlook
,”
Build. Environ.
,
42
(
6
), pp.
2197
2209
.
4.
Grand View Research
,
2018
, “Global Building Thermal Insulation Market Size Report,” https://www.grandviewresearch.com/industry-analysis/building-thermal-insulation-market
5.
Markets and Markets
,
2023
, “Thermal Insulation Material Market by Material Type,” https://www.marketsandmarkets.com/Market-Reports/thermal-insulation-material-market-189207197.html
6.
Schiavoni
,
S.
,
D’Alessandro
F.
,
Bianchi
,
F.
, and
Asdrubali
,
F.
,
2016
, “
Insulation Materials for the Building Sector: A Review and Comparative Analysis
,”
Renew. Sustain. Energy Rev.
,
62
, pp.
988
1011
.
7.
Ijjada
,
N.
, and
Nayaka
,
R. R.
,
2022
, “
Review on Properties of Some Thermal Insulating Materials Providing More Comfort in the Building
,”
Mater. Today: Proc.
,
58
, pp.
1354
1359
.
8.
Llantoy
,
N.
,
Chàfer
,
M.
, and
Cabeza
,
L. F.
,
2020
, “
A Comparative Life Cycle Assessment (LCA) of Different Insulation Materials for Buildings in the Continental Mediterranean Climate
,”
Energy Build.
,
225
, p.
110323
.
9.
Wallenberger
,
F. T.
, and
Bingham
,
P. A.
,
2010
,
Fiberglass and Glass Technology: Energy-Friendly Compositions and Applications
,
Springer
,
New York
.
10.
Chen
,
L.
,
Msigwa
,
G.
,
Yang
,
M.
,
Osman
,
A. I.
,
Fawzy
,
S.
,
Rooney
,
D. W.
, and
Yap
,
P.-S.
,
2022
, “
Strategies to Achieve a Carbon Neutral Society: A Review
,”
Environ. Chem. Lett.
,
20
(
4
), pp.
2277
2310
.
11.
Papadopoulos
,
A. M.
,
2005
, “
State of the Art in Thermal Insulation Materials and Aims for Future Developments
,”
Energy Build.
,
37
(
1
), pp.
77
86
.
12.
Jiang
,
L.
,
Xiao
,
H.
,
An
,
W.
,
Zhou
,
Y.
, and
Sun
,
J.
,
2014
, “
Correlation Study Between Flammability and the Width of Organic Thermal Insulation Materials for Building Exterior Walls
,”
Energy Build.
,
82
, pp.
243
249
.
13.
Asdrubali
,
F.
,
D’Alessandro
,
F.
, and
Schiavoni
,
S.
,
2015
, “
A Review of Unconventional Sustainable Building Insulation Materials
,”
Sustain. Mater. Technol.
,
4
, pp.
1
17
.
14.
Hu
,
F.
,
Wu
,
S.
, and
Sun
,
Y.
,
2019
, “
Hollow-Structured Materials for Thermal Insulation
,”
Adv. Mater.
,
31
(
38
), p.
1801001
.
15.
Dhangar
,
M.
,
Chaturvedi
,
K.
,
Mili
,
M.
,
Patel
,
S. S.
,
Khan
,
M. A.
,
Bhargaw
,
H. N.
,
Srivastava
,
A. K.
, and
Verma
,
S.
,
2023
, “
Emerging 3D Printed Thermal Insulating Materials for Sustainable Approach: A Review and a Way Forward
,”
Polym. Adv. Technol.
,
34
(
5
), pp.
1425
1434
.
16.
Siciliano
,
A. P.
,
Zhao
,
X.
,
Fedderwitz
,
R.
,
Ramakrishnan
,
K.
,
Dai
,
J.
,
Gong
,
A.
,
Zhu
,
J.
,
Kośny
,
J.
, and
Hu
,
L.
,
2023
, “
Sustainable Wood-Waste-Based Thermal Insulation Foam for Building Energy Efficiency
,”
Buildings
,
13
(
4
), p.
840
.
17.
Schirmeister
,
C. G.
, and
Mülhaupt
,
R.
,
2022
, “
Closing the Carbon Loop in the Circular Plastics Economy
,”
Macromol. Rapid Commun.
,
43
(
13
), p.
2200247
.
18.
Lammert
,
L.
,
2018
, “
Circular Economy in Architecture: Sustainable Principles for Future Design
,” University of Oulu, Oulu, Finland.
19.
Mindermann
,
P.
,
Gil Pérez
,
M.
,
Knippers
,
J.
, and
Gresser
,
G. T.
,
2022
, “
Investigation of the Fabrication Suitability, Structural Performance, and Sustainability of Natural Fibers in Coreless Filament Winding
,”
Materials
,
15
(
9
), p.
3260
.
20.
Tian
,
S.-Q.
,
Zhao
,
R.-Y.
, and
Chen
,
Z.-C.
,
2018
, “
Review of the Pretreatment and Bioconversion of Lignocellulosic Biomass From Wheat Straw Materials
,”
Renew. Sustain. Energy Rev.
,
91
, pp.
483
489
.
21.
Smil
,
V.
,
1999
, “
Crop Residues: Agriculture's Largest Harvest: Crop Residues Incorporate More Than Half of the World's Agricultural Phytomass
,”
Bioscience
,
49
(
4
), pp.
299
308
.
22.
Rojas
,
C.
,
Cea
,
M.
,
Iriarte
,
A.
,
Valdés
,
G.
,
Navia
,
R.
, and
Cárdenas-R
,
J. P.
,
2019
, “
Thermal Insulation Materials Based on Agricultural Residual Wheat Straw and Corn Husk Biomass, for Application in Sustainable Buildings
,”
Sustain. Mater. Technol.
,
20
, p.
e00102
.
23.
Yin
,
X.
,
Lawrence
,
M.
,
Maskell
,
D.
, and
Ansell
,
M.
,
2018
, “
Comparative Micro-structure and Sorption Isotherms of Rice Straw and Wheat Straw
,”
Energy Build.
,
173
, pp.
11
18
.
24.
Koh
,
C. H.
,
Gauvin
,
F.
,
Schollbach
,
K.
, and
Brouwers
,
H. J. H.
,
2023
, “
Upcycling Wheat and Barley Straws Into Sustainable Thermal Insulation: Assessment and Treatment for Durability
,”
Resour. Conserv. Recycl.
,
198
, p.
107161
.
25.
Cen
,
Q.
,
Chen
,
S.
,
Yang
,
D.
,
Zheng
,
D.
, and
Qiu
,
X.
,
2023
, “
Full Bio-based Aerogel Incorporating Lignin for Excellent Flame Retardancy, Mechanical Resistance, and Thermal Insulation
,”
ACS Sustain. Chem. Eng.
,
11
(
11
), pp.
4473
4484
.
26.
Wang
,
C.
,
Xiong
,
Y.
,
Fan
,
B.
,
Yao
,
Q.
,
Wang
,
H.
,
Jin
,
C.
, and
Sun
,
Q.
,
2016
, “
Cellulose as an Adhesion Agent for the Synthesis of Lignin Aerogel With Strong Mechanical Performance, Sound-Absorption and Thermal Insulation
,”
Sci. Rep.
,
6
(
1
), p.
32383
.
27.
Setyawan
,
H.
,
Fauziyah
,
M. A.
,
Tomo
,
H. S. S.
,
Widiyastuti
,
W.
, and
Nurtono
,
T.
,
2022
, “
Fabrication of Hydrophobic Cellulose Aerogels From Renewable Biomass Coir Fibers for Oil Spillage Clean-Up
,”
J. Polym. Environ.
,
30
(
12
), pp.
5228
5238
.
28.
Zhang
,
F.
,
Wang
,
C.
,
Mu
,
C.
, and
Lin
,
W.
,
2022
, “
A Novel Hydrophobic All-Biomass Aerogel Reinforced by Dialdehyde Carboxymethyl Cellulose for Oil/Organic Solvent-Water Separation
,”
Polymer
,
238
, p.
124402
.
29.
Lieder
,
M.
, and
Rashid
,
A.
,
2016
, “
Towards Circular Economy Implementation: A Comprehensive Review in Context of Manufacturing Industry
,”
J. Cleaner Prod.
,
115
, pp.
36
51
.
30.
Nascimento
,
D. L. M.
,
Alencastro
,
V.
,
Quelhas
,
O. L. G.
,
Caiado
,
R. G. G.
,
Garza-Reyes
,
J. A.
,
Rocha-Lona
,
L.
, and
Tortorella
,
G.
,
2019
, “
Exploring Industry 4.0 Technologies to Enable Circular Economy Practices in a Manufacturing Context: A Business Model Proposal
,”
J. Manuf. Technol. Manage.
,
30
(
3
), pp.
607
627
.
31.
Schöggl
,
J.-P.
,
Stumpf
,
L.
, and
Baumgartner
,
R. J.
,
2020
, “
The Narrative of Sustainability and Circular Economy—A Longitudinal Review of Two Decades of Research
,”
Resour. Conserv. Recycl.
,
163
, p.
105073
.
32.
Colorado
,
H. A.
,
Velásquez
,
E. I. G.
, and
Monteiro
,
S. N.
,
2020
, “
Sustainability of Additive Manufacturing: The Circular Economy of Materials and Environmental Perspectives
,”
J. Mater. Res. Technol.
,
9
(
4
), pp.
8221
8234
.
33.
de Sousa Jabbour
,
A. B. L.
,
Rojas Luiz
,
J. V.
,
Rojas Luiz
,
O.
,
Jabbour
,
C. J. C.
,
Ndubisi
,
N. O.
,
Caldeira de Oliveira
,
J. H.
, and
Junior
,
F. H.
,
2019
, “
Circular Economy Business Models and Operations Management
,”
J. Cleaner Prod.
,
235
, pp.
1525
1539
.
34.
Brydges
,
T.
,
2021
, “
Closing the Loop on Take, Make, Waste: Investigating Circular Economy Practices in the Swedish Fashion Industry
,”
J. Cleaner Prod.
,
293
, p.
126245
.
35.
Blomsma
,
F.
,
Pieroni
,
M.
,
Kravchenko
,
M.
,
Pigosso
,
D. C. A.
,
Hildenbrand
,
J.
,
Kristinsdottir
,
A. R.
,
Kristoffersen
,
E.
, et al
,
2019
, “
Developing a Circular Strategies Framework for Manufacturing Companies to Support Circular Economy-Oriented Innovation
,”
J. Cleaner Prod.
,
241
, p.
118271
.
36.
Ben-Ner
,
A.
, and
Siemsen
,
E.
,
2017
, “
Decentralization and Localization of Production: The Organizational and Economic Consequences of Additive Manufacturing (3D Printing)
,”
Calif. Manage. Rev.
,
59
(
2
), pp.
5
23
.
37.
Poudel
,
L.
,
Elagandula
,
S.
,
Zhou
,
W.
, and
Sha
,
Z.
,
2023
, “
Decentralized and Centralized Planning for Multi-robot Additive Manufacturing
,”
ASME J. Mech. Des.
,
145
(
1
), p.
012003
.
38.
Bi
,
X.
, and
Huang
,
R.
,
2022
, “
3D Printing of Natural Fiber and Composites: A State-of-the-Art Review
,”
Mater. Des.
,
222
, p.
111065
.
39.
Oksman
,
K.
,
Skrifvars
,
M.
, and
Selin
,
J.-F.
,
2003
, “
Natural Fibres as Reinforcement in Polylactic Acid (PLA) Composites
,”
Compos. Sci. Technol.
,
63
(
9
), pp.
1317
1324
.
40.
Markstedt
,
K.
,
Mantas
,
A.
,
Tournier
,
I.
,
Martínez Ávila
,
H.
,
Hägg
,
D.
, and
Gatenholm
,
P.
,
2015
, “
3D Bioprinting Human Chondrocytes With Nanocellulose–Alginate Bioink for Cartilage Tissue Engineering Applications
,”
Biomacromolecules
,
16
(
5
), pp.
1489
1496
.
41.
Guo
,
Z.
,
Yang
,
R.
,
Wang
,
T.
,
An
,
L.
,
Ren
,
S.
, and
Zhou
,
C.
,
2021
, “
Cost-Effective Additive Manufacturing of Ambient Pressure-Dried Silica Aerogel
,”
ASME J. Manuf. Sci. Eng.
,
143
(
1
), p.
011011
.
42.
Guo
,
Z.
,
An
,
L.
,
Lakshmanan
,
S.
,
Armstrong
,
J. N.
,
Ren
,
S.
, and
Zhou
,
C.
,
2022
, “
Additive Manufacturing of Porous Ceramics With Foaming Agent
,”
ASME J. Manuf. Sci. Eng.
,
144
(
2
), p.
021010
.
43.
Guo
,
Z.
, and
Zhou
,
C.
,
2021
, “
Recent Advances in Ink-Based Additive Manufacturing for Porous Structures
,”
Addit. Manuf.
,
48
, p.
102405
.
44.
Lewis
,
J. A.
,
2006
, “
Direct Ink Writing of 3D Functional Materials
,”
Adv. Funct. Mater.
,
16
(
17
), pp.
2193
2204
.
45.
Song
,
X.
,
Tetik
,
H.
,
Jirakittsonthon
,
T.
,
Parandoush
,
P.
,
Yang
,
G.
,
Lee
,
D.
,
Ryu
,
S.
,
Lei
,
S.
,
Weiss
,
M. L.
, and
Lin
,
D.
,
2019
, “
Biomimetic 3D Printing of Hierarchical and Interconnected Porous Hydroxyapatite Structures With High Mechanical Strength for Bone Cell Culture
,”
Adv. Eng. Mater.
,
21
(
1
), p.
1800678
.
46.
Di Luigi
,
M.
,
Guo
,
Z.
,
An
,
L.
,
Armstrong
,
J. N.
,
Zhou
,
C.
, and
Ren
,
S.
,
2022
, “
Manufacturing Silica Aerogel and Cryogel Through Ambient Pressure and Freeze Drying
,”
RSC Adv.
,
12
(
33
), pp.
21213
21222
.
47.
Zhang
,
Q.
,
Zhang
,
F.
,
Medarametla
,
S. P.
,
Li
,
H.
,
Zhou
,
C.
, and
Lin
,
D.
,
2016
, “
3D Printing of Graphene Aerogels
,”
Small
,
12
(
13
), pp.
1702
1708
.
48.
Guo
,
Z.
,
Fei
,
F.
,
Song
,
X.
, and
Zhou
,
C.
,
2023
, “
Analytical Study and Experimental Verification of Shear-Thinning Ink Flow in Direct Ink Writing Process
,”
ASME J. Manuf. Sci. Eng.
,
145
(
7
), p.
071001
.
49.
Chami Khazraji
,
A.
, and
Robert
,
S.
,
2013
, “
Self-assembly and Intermolecular Forces When Cellulose and Water Interact Using Molecular Modeling
,”
J. Nanomater.
,
2013
(
1
), pp.
1
12
.
50.
Li
,
Y.
,
Lin
,
M.
, and
Davenport
,
J. W.
,
2011
, “
Ab Initio Studies of Cellulose I: Crystal Structure, Intermolecular Forces, and Interactions With Water
,”
J. Phys. Chem. C
,
115
(
23
), pp.
11533
11539
.
51.
Moon
,
R. J.
,
Martini
,
A.
,
Nairn
,
J.
,
Simonsen
,
J.
, and
Youngblood
,
J.
,
2011
, “
Cellulose Nanomaterials Review: Structure, Properties and Nanocomposites
,”
Chem. Soc. Rev.
,
40
(
7
), pp.
3941
3994
.
52.
Medronho
,
B.
, and
Lindman
,
B.
,
2015
, “
Brief Overview on Cellulose Dissolution/Regeneration Interactions and Mechanisms
,”
Adv. Colloid Interface Sci.
,
222
, pp.
502
508
.
53.
Abdullaev
,
A. R.
,
O’g’li Rafiqov
,
X. M.
, and
Zulxumor
,
I. N. Q.
,
2021
, “
A Review On: Analysis of the Properties of Thermal Insulation Materials
,”
Am. J. Interdiscipl. Innov. Res.
,
3
(
5
), pp.
27
38
.
54.
Wei
,
G.
,
Liu
,
Y.
,
Zhang
,
X.
,
Yu
,
F.
, and
Du
,
X.
,
2011
, “
Thermal Conductivities Study on Silica Aerogel and Its Composite Insulation Materials
,”
Int. J. Heat Mass Transfer
,
54
(
11–12
), pp.
2355
2366
.
55.
Akhter
,
F.
,
Soomro
,
S. A.
, and
Inglezakis
,
V. J.
,
2021
, “
Silica Aerogels; A Review of Synthesis, Applications and Fabrication of Hybrid Composites
,”
J. Porous Mater.
,
28
(
5
), pp.
1387
1400
.
56.
Xie
,
T.
, and
He
,
Y.-L.
,
2016
, “
Heat Transfer Characteristics of Silica Aerogel Composite Materials: Structure Reconstruction and Numerical Modeling
,”
Int. J. Heat Mass Transfer
,
95
, pp.
621
635
.
57.
Zhao
,
J.-J.
,
Duan
,
Y.-Y.
,
Wang
,
X.-D.
, and
Wang
,
B.-X.
,
2012
, “
Radiative Properties and Heat Transfer Characteristics of Fiber-Loaded Silica Aerogel Composites for Thermal Insulation
,”
Int. J. Heat Mass Transfer
,
55
(
19–20
), pp.
5196
5204
.
58.
Bogers
,
M.
,
Hadar
,
R.
, and
Bilberg
,
A.
,
2016
, “
Additive Manufacturing for Consumer-Centric Business Models: Implications for Supply Chains in Consumer Goods Manufacturing
,”
Technol. Forecast. Soc. Change
,
102
, pp.
225
239
.
59.
Martukanitz
,
R.
,
Michaleris
,
P.
,
Palmer
,
T.
,
DebRoy
,
T.
,
Liu
,
Z.-K.
,
Otis
,
R.
,
Heo
,
T. W.
, and
Chen
,
L.-Q.
,
2014
, “
Toward an Integrated Computational System for Describing the Additive Manufacturing Process for Metallic Materials
,”
Addit. Manuf.
,
1
, pp.
52
63
.
60.
Croom
,
B. P.
,
Abbott
,
A.
,
Kemp
,
J. W.
,
Rueschhoff
,
L.
,
Smieska
,
L.
,
Woll
,
A.
,
Stoupin
,
S.
, and
Koerner
,
H.
,
2021
, “
Mechanics of Nozzle Clogging During Direct Ink Writing of Fiber-Reinforced Composites
,”
Addit. Manuf.
,
37
, p.
101701
.
You do not currently have access to this content.