Abstract

Thermo-mechanical fatigue (TMF) resistance of engineering materials is extremely important for the durability and reliability of components and systems subjected to combined thermal and mechanical loadings. However, TMF testing, modeling, simulation, validation, and the subsequent implementation of the findings into product design are challenging tasks because of the difficulties not only in testing but also in results interpretation and in the identification of the deformation and failure mechanisms. Under combined high-temperature and severe mechanical loading conditions, creep and oxidation mechanisms are activated and time-dependent failure mechanisms are superimposed to cycle-dependent fatigue, making the life assessment very complex. In this paper, the testing procedures and results for high-temperature fatigue testing using flat specimens and thermal-fatigue testing using V-shape specimens are reported; emphasis is given to hold-time effects and the possible underlying mechanisms. The uncertainty nature and the probabilistic characteristics of the V-shape specimen test data are also presented. Finally, the impact of hold-time effect on current product design and validation procedure is discussed in terms of virtual life assessment.

References

1.
Santacreu
,
P. O.
,
Faivre
,
L.
, and
Acher
,
A.
, “
Life Prediction Approach for Stainless Steel Exhaust Manifold
,”
SAE Int. J. Passeng. Cars-Mech. Syst.
, Vol.
5
, No.
2
,
2012
, pp.
904
910
.
2.
Kotrba
,
A.
,
Yetkin
,
A.
,
Gough
,
B.
,
Gundogan
,
A.
,
Mastbergen
,
D.
, and
Paterson
,
C.
, “
Performance Characterization of a Thermal Regeneration Unit for Exhaust Emissions Controls Systems
,” SAE Technical Paper 2011-01-2208, SAE, Warrendale, PA.
3.
Saxena
,
A.
and
Dogan
,
B.
, Eds.,
Creep-Fatigue Interactions: Test Methods and Models, ASTM STP 1539
,
ASTM International
,
West Conshohocken, PA
,
2011
.
4.
Krempl
,
E.
and
Wundt
,
B. M.
,
Hold-Time Effects in High-Temperature Low-Cycle Fatigue: A Literature Survey and Interpretive Report, ASTM STP 489
, ASTM International, West Conshohocken, PA, ASTM International,
1971
.
5.
Santacreu
,
P. O.
,
Simon
,
C.
, and
Coleman
,
A.
, “
Thermomechanical Fatigue Behavior of Stainless Steel Grades for Automotive Exhaust Manifold Applications
,”
Thermomechanical Fatigue Behavior of Materials
, Vol.
4
,
McGaw
M. A.
,
Kalluri
S.
,
Bressers
J.
, and
Peteves
S. D.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
2003
, pp.
227
239
.
6.
Manson
,
S. S.
and
Halford
,
G. R.
,
Fatigue and Durability of Metals at High Temperatures
,
ASM International
,
Materials Park, OH
,
2009
.
7.
Gallerneau
,
F.
,
Nouailhas
,
D.
, and
Chaboche
,
J.L.
, “
A Fatigue Damage Model Including Interaction Effects With Oxidation and Creep Damages
,”
Proceedings of The Sixth International Fatigue Congress, 1996, Berlin, Germany
, Vol.
2
,
Lütjering
G.
and
Nowack
H.
, Eds., pp.
861
866
.
8.
Neu
,
R. W.
and
Sehitoglu
,
H.
, “
Thermomechanical Fatigue, Oxidation and Creep: Part I, Damage Mechanics
,”
Metall. Trans. A
, Vol.
20
, No.
9
,
1989
, pp.
1755
1767
.
9.
Neu
,
R. W.
and
Sehitoglu
,
H.
, “
Thermomechanical Fatigue, Oxidation and Creep: Part I, Life Prediction
,”
Metall. Trans. A
, Vol.
20
, No.
9
,
1989
, pp.
1769
1783
.
10.
Engler-Pinto
,
C. C.
,
Sehitoglu
,
H.
, and
Maier
,
H. J.
, “
Cyclic Behavior of Al319-T7B Under Isothermal and Non-Isothermal Condition
,”
Thermomechanical Fatigue Behavior of Materials: ASTM STP 1428
, Vol.
4
,
McGaw
M. A.
,
Kalluri
,
J.
,
Bressers
and
Peteves
S. D.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
2003
, pp.
45
64
.
11.
Su
,
X.
,
Zubeck
,
M.
,
Lasecki
,
J.
,
Sehitoglu
,
H.
,
Engler-Pinto
,
C. C.
,
Tang
,
C. Y.
, and
Allison
,
J. E.
, “
Thermomechanical Fatigue Analysis of Cast Aluminum Engine Components
,”
Thermomechanical Fatigue Behavior of Materials: ASTM STP 1428
, Vol.
4
,
McGaw
M. A.
,
Bressers
Kalluri, J.
,
and
Peteves
S. D.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
2003
, pp.
240
251
.
12.
Lancaster
,
R. J.
,
Whittaker
,
M. T.
, and
Williams
,
S. J.
, “
A Review of Thermo-Mechanical Fatigue Behavior in Polycrystalline Nickel Superalloys for Turbine Disc Applications
,”
Mater. High Temp.
, Vol.
30
, No.
1
,
2013
, pp.
2
12
.
13.
Coffin
,
L. F.
, Jr.
, “
A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal
,”
Trans. ASME
, Vol.
76
,
1954
, pp.
931
950
.
14.
Coffin
,
L. F.
,
Fatigue at High Temperature, Fatigue at Elevated Temperature, ASTM STP 520
,
Carden
A. E.
,
McEvily
A. J.
and
Wells
C. H.
, Eds.,
ASTM International
,
Philadelphia, PA
,
1973
.
15.
Swindeman
,
R. W.
, “
Strain-Fatigue Properties of Inconel. Part-II: Isothermal Tests With Constant Hold Time
,” Technical Report, Oak Ridge National Lab, Oak Ridge, TN,
1962
.
16.
Manson
,
S. S.
, “
Behaviour of Materials Under Conditions of Thermal Stress
,” NACA TN-2933, National Advisory Committee for Aeronautics, Washington, D.C.,
1954
.
17.
Taira
,
S.
,
Relationship Between Thermal Fatigue and Low-Cycle Fatigue at Elevated Temperature, Fatigue at Elevated Temperature, ASTM STP 520
, ASTM International, Philadelphia, PA,
1973
.
18.
ASTM E2714-13:
Standard Test Method for Creep-Fatigue Testing
, Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA,
2013
.
19.
API579-1/ASME FFS-1
2007
:
Fitness-For-Service, The American Society of Mechanical Engineers and API
, ASME, New York,
2007
.
20.
Avery
,
K.
,
Pan
,
J.
,
Engler-Pinto
,
C.
,
Wei
,
Z.
,
Yang
,
F.
,
Luo
,
L.
, and
Konson
,
D.
, “
Fatigue Behavior of Stainless Steel Sheet Specimens at Extremely High Temperatures
,” 2014 SAE Technical Paper 2014-01-0975, SAE, Warrendale, PA,
2014
.
21.
Wei
,
Z.
,
Yang
,
F.
,
Lin
,
B.
,
Luo
,
L.
, and
Nikbin
,
K.
, “
Deterministic and Probabilistic Creep-Fatigue-Oxidation Crack Growth Modeling
,”
Probab. Eng. Mech.
, Vol.
33
,
2013
, pp.
126
134
.
22.
Hutchingson
,
J. W.
and
Neale
,
K. W.
, “
Neck Propagation
,”
J. Mech. Phys. Solids
, Vol.
31
, No.
5
,
1983
, pp.
405
426
.
23.
Prager
,
M.
, “
Development of the MPC Omega Method for Life Assessment in the Creep Range
,”
J. Pressure Vessel Technol.
, Vol.
117
,
1995
, pp.
95
103
.
24.
Prager
,
M.
, “
The Omega Method-an Engineering Approach to Life Assessment
,”
J. Pressure Vessel Technol.
, Vol.
122
,
1995
, pp.
273
280
.
25.
Wei
,
Z.
,
Konson
,
D.
,
Yang
,
F.
,
Luo
,
L.
,
Ellinghaus
,
K.
, and
Pieszkalla
,
M.
, “
Thermal Fatigue Resistance Characterization and Ranking of Materials Using the V-Shape Specimen Testing Method
,”
Fatigue Fract. Eng. Mater. Struct.
, Vol.
37
, No.
8
,
2014
, pp.
897
908
.
26.
Wei
,
Z.
,
Yang
,
F.
,
Cheng
,
H.
, and
Nikbin
,
K.
, “
Probabilistic Prediction of Crack Growth Based on Creep/Fatigue Damage Accumulation Mechanism
,”
J. ASTM Int.
, Vol.
8
, No.
5
, 103690.
27.
Wei
,
Z.
and
Nikbin
,
K.
, “
Uncertainty Characterization of Engineering Failure Data
,”
Proceedings of the ASME 2014 Pressure Vessels & Piping Division Conference, PVP2014-28877
, Anaheim, CA, July 20–24,
2014
.
28.
Dassault Systems
,
Abaqus Analysis User's Manual
, Version 6.7,
Dassault Systems
,
Vélizy-Villacoublay, France
,
2007
.
This content is only available via PDF.
You do not currently have access to this content.