Abstract

This article summarizes the results of a round robin (RR) study begun in 2013 to evaluate ASTM E2760-10, Standard Method for Creep-Fatigue Crack Growth Testing (Superseded). Thirteen laboratories from around the world conducted testing and reported results. The test material was a creep-ductile, ASTM Grade P91 9Cr-1Mo steel. All testing was performed using nominally 50-mm-wide compact tension specimens at a test temperature of 625°C using trapezoidal waveforms with hold times of 0, 60, and 600 s. The 600-s hold time condition was the primary condition used for assessing interlaboratory variability among crack growth rates. Loading/unloading times were 2 s each. All laboratories tested duplicate specimens that were identical in all respects except for the force amplitude levels. Results from prior studies that included tensile, creep deformation and rupture, and low-cycle fatigue properties were available for the analysis of tests conducted as part of this RR testing. Crack growth rates at 600-s hold time reported by six laboratories fall within a 95 % confidence band (interlaboratory variability) separated by a factor of 6.16 when correlated with ΔK, 10.76 when correlated with measured vales of (Ct)avg, and 7.17 when correlated with calculated values of (Ct)avg.

References

1.
Evans
R. W.
and
Wilshire
B.
,
Introduction to Creep
(
London
:
Institute of Materials
,
1993
).
2.
Ashby
M. F.
,
Shercliff
H.
, and
Cebon
D.
,
Materials: Engineering, Science, Processing and Design
(
New York
:
Elsevier
,
2007
).
3.
Holdsworth
S. R.
,
Mazza
E.
,
Binda
L.
, and
Ripamonti
L.
, “
Development of Thermal Fatigue Damage in 1CrMoV Rotor Steel
,”
Nuclear Engineering and Design
237
, no. 
24
(December
2007
):
2292
2301
. https://doi.org/10.1016/j.nucengdes.2007.05.002
4.
Miller
D. A.
and
Priest
R. H.
, “
Materials Response to Thermal-Mechanical Strain Cycling
,” in
High Temperature Fatigue: Properties and Prediction
(
Dordrecht, the Netherlands
:
Springer
,
1987
),
113
175
.
5.
Standard Test Method for Creep-Fatigue Crack Growth Testing
(Superseded), ASTM E2760-10 (
West Conshohocken, PA
:
ASTM International
, approved May 1,
2010
). https://doi.org/10.1520/E2760-10
6.
Standard Test Method for Creep-Fatigue Crack Growth Testing
, ASTM E2760-16 (
West Conshohocken, PA
:
ASTM International
, approved November 1,
2016
). https://doi.org/10.1520/E2760-16
7.
Saxena
A.
,
Kalyanasundaram
V.
,
Holdsworth
S. R.
, and
Dogan
B.
,
Final Report on Round-Robin Conducted in Support of Standard Test Method for Creep-Fatigue Testing, EPRI Technical Report 3002001719
(
Palo Alto, CA
:
Electric Power Research Institute
,
2013
).
8.
Sikka
V. K.
,
Ward
C. T.
, and
Thomas
K. C.
, “
Modified 9Cr-1Mo Steel – An Improved Alloy for Steam Generator Application
” (paper presentation, Conference on Ferritic Steels for High Temperature Applications,
Warren, PA
, October 6–8,
1981
).
9.
Kunz
L.
and
Lukáš
P.
, “
High Temperature Fatigue and Cyclic Creep of P91 Steel
,”
European Structural Integrity Society
29
(
2002
):
37
44
.
10.
Gieseke
B. G.
,
Brinkman
C. R.
, and
Maziasz
P. J.
, “
The Influence of Thermal Aging on the Microstructure and Fatigue Properties of Modified 9Cr-1Mo Steel
” (paper presentation, Microstructures and Mechanical Properties of Aging Material,
Detroit, MI
, November 2–5,
1992
).
11.
Muramatsu
M.
,
Suzuki
T.
, and
Nakasone
Y.
, “
Effects of Microstructure on Material Properties of Modified 9Cr-1Mo Steels Subject to Creep-Fatigue
,”
Journal of Mechanical Science and Technology
29
, no. 
1
(January
2015
):
121
129
. https://doi.org/10.1007/s12206-014-1219-7
12.
Hald
J.
, “
Metallurgy and Creep Properties of New 9-12%Cr Steels
,”
Steel Research
67
, no. 
9
(September
1996
):
369
374
. https://doi.org/10.1002/srin.199605503
13.
Viswanathan
R.
and
Nutting
J.
, eds.,
Advanced Heat Resistant Steels for Power Generation
(
Cambridge, UK
:
The University Press
,
1998
).
14.
Fournier
B.
,
Sauzay
M.
,
Caës
C.
,
Noblecourt
M.
, and
Mottot
M.
, “
Analysis of the Hysteresis Loops of a Martensitic Steel. Part I: Study of the Influence of Strain Amplitude and Temperature under Pure Fatigue Loadings Using an Enhanced Stress Partitioning Method
,”
Materials Science and Engineering: A
437
, no. 
2
(November
2006
):
183
196
. https://doi.org/10.1016/j.msea.2006.08.086
15.
Cohn
M. J.
,
Henry
J. F.
, and
Nass
D.
, “
Fabrication, Construction and Operation Problems for Grade 91 Fossil Power Components
,”
Journal of Pressure Vessel Technology
127
, no. 
2
(May
2005
):
197
203
. https://doi.org/10.1115/1.1904054
16.
Saxena
A.
and
Narasimhachary
S. B.
, “
Round Robin on Creep Fatigue Crack Growth Testing for Verification of ASTM Standard 2760-10
,”
Materials at High Temperatures
31
, no. 
4
(
2014
):
357
363
. https://doi.org/10.1179/0960340914Z.00000000049
17.
Kalyanasundaram
V.
,
Saxena
A.
,
Narasimhachary
S.
, and
Dogan
B.
, “
ASTM Round-Robin on Creep-Fatigue and Creep Behavior of P91 Steel
,”
Journal of ASTM International
8
, no. 
4
(April
2011
):
1
10
. https://doi.org/10.1520/JAI103712
18.
Saxena
A.
and
Narasimhachary
S. B.
,
Creep-Fatigue Crack Growth Testing of P91 Steel: Results of the Round-Robin for Assessing ASTM Standard E-2760-10, EPRI Technical Report 3002014273
(
Palo Alto, CA
:
Electric Power Research Institute
,
2018
).
19.
Narasimhachary
S. B.
and
Saxena
A.
, “
Crack Growth Behavior of 9Cr–1Mo (P91) Steel under Creep-Fatigue Conditions
,”
International Journal of Fatigue
56
(November
2013
):
106
113
. https://doi.org/10.1016/j.ijfatigue.2013.07.006
20.
Saxena
A.
, “
Creep Crack Growth under Non-Steady-State Conditions
,” in
Fracture Mechanics
, Vol. 17, ed.
Underwood
J. H.
,
Chait
R.
,
Smith
C. W.
,
Wilhem
D. P.
,
Andrews
W. A.
, and
Newman
J. C.
(
West Conshohocken, PA
:
ASTM International
,
1986
),
185
201
. https://doi.org/10.1520/STP17396S
21.
Saxena
A.
and
Gieseke
B.
, “
Transients in Elevated Temperature Crack Growth
,” in
International Seminar on High Temperature Fracture Mechanisms and Mechanics III, EGF-6
(
New York
:
Elsevier
,
1987
),
19
36
.
22.
Yoon
K. B.
,
Saxena
A.
, and
Liaw
P. K.
, “
Characterization of Creep-Fatigue Crack Growth Behavior under Trapezoidal Waveshape Using Ct-Parameter
,”
International Journal of Fracture
59
, no. 
2
(January
1993
):
95
114
. https://doi.org/10.1007/BF00012385
23.
Adefris
N.
,
Saxena
A.
, and
McDowell
D. L.
, “
An Alternative Analytical Approximation of the Ct Parameter
,”
Fatigue and Fracture of Engineering Materials and Structures
21
, no. 
4
(April
1998
):
375
385
. https://doi.org/10.1046/j.1460-2695.1998.00531.x
24.
Saxena
A.
and
Narasimhachary
S. B.
, “
Accounting for Crack Tip Cyclic Plasticity and Creep Reversal in Estimating (Ct)avg during Creep-Fatigue Crack Growth
,”
Fatigue and Fracture of Engineering Materials and Structures
42
, no. 
9
(September
2019
):
2053
2060
. https://doi.org/10.1111/ffe.13081
25.
Saxena
A.
,
Advanced Fracture Mechanics and Structural Integrity
(
Boca Raton, FL
:
CRC Press
,
2019
).
26.
Yoon
K. B.
,
Saxena
A.
, and
McDowell
D. L.
, “
Influence of Crack Tip Cyclic Plasticity on Creep-Fatigue Crack Growth
,” in
Fracture Mechanics: Twenty Second Symposium
, Vol. 1, ed.
Ernst
H. A.
,
Saxena
A.
, and
McDowell
D. L.
(
West Conshohocken, PA
:
ASTM International
,
1992
),
367
392
. https://doi.org/10.1520/STP1131-EB
27.
Kumar
V.
,
German
M. D.
, and
Shih
C. F.
,
An Engineering Approach for Elastic-Plastic Fracture Analysis, EPRI Report NP-1931
(
Palo Alto, CA
:
Electric Power Research Institute
,
1981
).
28.
Grover
P. S.
and
Saxena
A.
, “
Characterization of Creep Fatigue Crack Growth Behavior in 2.25 Cr-1 Mo Steel Using (Ct)avg
,”
International Journal of Fracture
73
, no. 
4
(December 1995):
273
286
. https://doi.org/10.1007/BF00027270
29.
Narasimhachary
S. B.
,
Bhachu
K. S.
,
Shinde
S. R.
,
Gravett
P. W.
, and
Newman
J. C.
 Jr.
, “
A Single Edge Notch Specimen for Fatigue, Creep-Fatigue and Thermo-Mechanical Fatigue Crack Growth Testing
,”
Engineering Fracture Mechanics
199
(August
2018
):
760
772
. https://doi.org/10.1016/j.engfracmech.2017.08.011
30.
Narasimhachary
S. B.
,
Gravett
P. W.
,
Shinde
S. R.
, and
Newman
J. C.
 Jr.
, “
Verification of Stress-Intensity Factor and Compliance Relations for a Single Edge Notch Specimen under Tension-Compression Loading
,”
Engineering Fracture Mechanics
(in press). https://doi.org/10.1016/j.engfracmech.2019.106493
31.
Saxena
A.
,
Bassi
F.
,
Nibur
K.
, and
Newman
J. C.
 Jr.
, “
On Single-Edge-Crack Tension Specimens for Tension-Compression Fatigue Crack Growth Testing
,”
Engineering Fracture Mechanics
176
(May
2017
):
343
350
. https://doi.org/10.1016/j.engfracmech.2017.03.030
This content is only available via PDF.
You do not currently have access to this content.